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Final Project : Volumetric Surface Reconstruction

by Spencer Van Leeuwen

In [1]: %matplotlib inline 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

import mayavi.mlab 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import maxflow 

from skimage import img_as_ubyte 

from skimage.color import rgb2grey 

from skimage.color import rgb2hsv 

Part 1 : Segmentation

Loading the dataset

First, we start by loading the dataset. I will be using the temple dataset by Steven Seitz et al.
(http://grail.cs.washington.edu/projects/mview/). All data is stored in the "temple/" directory. It contains a set of
photos of a sculpture taken from different angles.

A sample image is provided below.

http://grail.cs.washington.edu/projects/mview/
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In "temple/temple_par.txt", we have a parameters file that starts with the number of images in the folder. Every
subsequent line has the following format:

file_name k11 k12 k13 k21 k22 k23 k31 k32 k33 r11 r12 r13 r21 r22 r23 r31 r3

2 r33 t1 t2 t3 

where the projection matrix of the given camera is .

In [2]: img_dir = 'temple/' 

file_root = 'temple' 

params = [] 

with open(img_dir + file_root + '_par.txt', 'r') as f: 

   for line in f: 

       params.append(line.split()) 

    

num_images = params[0][0] 

params = params[1:] 

    

images = [] 

for par in params: 

   images.append(plt.imread(img_dir + par[0])) 

Segmentation of the images

I have altered the graph cuts code that I submitted for Assignment 3 so that it no longer required user input.
Instead, I initialize it by selecting high-intensity pixels as object pixels. In particular, I convert the image to
greyscale and take the pixels in the 80th percentile of intensity. K-means with  was giving me trouble. K-
means could probably be used if we wanted something more general, but I figure that I might as well take
advantage of the simplicity of the dataset.

Recall that in Assignment 3, we used k-means to segment the colours then compute the t-links. As an
alternative, we were allowed to use colour histogram binning. I started off by using k-means since I already had it
implemented from Assignment 3. However, I found that the randomness made it unreliable. In particular, since
there is no longer an interactive component, poor groupings by k-means were leading to the algorithm including
the table cloth as part of the object. I couldn't find values for sigma and the regulizer that would mitigate this
problem. However, I have altered the algorithm to use colour histogram binning and this solved the problem.

Now, we are able to iteratively re-compute the weights of the t-links depending on the likelihood of an object or
background pixel being in a given bin. I iterate until < 1% of the pixels change their label from one iteration to the
next.

P = K [R ∣ T ]

k = 2
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In [3]: class MyGraphCuts: 

   bgr_value = 0 

   obj_value = 1 

   none_value = 2 

    

   def __init__(self, img, sigma=1, regularizer=1, bins_per_channel=

10, init_percentile=90): 

       self.num_rows = img.shape[0] 

       self.num_cols = img.shape[1] 

       self.shape = img.shape[:2] 

        

       self.img = img.copy().astype('d') 

        

       self.sigma = sigma 

       self.regularizer = regularizer 

       self.bins_per_channel = bins_per_channel 

        

       self.max_weight = 2**5-1 

       self.t_inf = max(4*self.max_weight, regularizer*4*self.max_we

ight) 

        

       self.label_mask = self.compute_label_mask() 

       self.seed_mask = self.high_intensity_mask(init_percentile)   

        

   # Returns pixels in the 90th percentile of intensity 

   def high_intensity_mask(self, p): 

       grey_img = rgb2grey(self.img) 

       bright_pixels = np.percentile(grey_img, p) 

        

       return (np.sum(self.img, axis=2) > bright_pixels).astype('i') 

        

   # Link weights are regularized to be in the range [0,max_weight].

This ensures that edge weights 

   # are small integers in order to take advantage of optimizations

in the graph cut library 

   def regularize(self, weights, n_link=True): 

       min_weight = np.amin(weights) 

       max_weight = np.amax(weights) 

        

       weights[:,:] = (self.regularizer if n_link else 1) * \ 

                       (self.max_weight) * (weights - min_weight)/ab

s(max_weight - min_weight) 

        

   # n-link weights are computed depending on the difference of pixe

l intensities 

   def compute_grid_weights(self): 

       hor_weights = np.zeros(self.shape, 'd')         

       hor_weights[:,:-1] = np.exp(- (np.linalg.norm(self.img[:,:-1]

- self.img[:,1:], axis=2)**2 / self.sigma**2)) 

       self.regularize(hor_weights) 

    

       vert_weights = np.zeros(self.shape, 'd') 

       vert_weights[:-1,:] = np.exp(- (np.linalg.norm(self.img[:-1

,:] - self.img[1:,:], axis=2)**2 / self.sigma**2)) 

       self.regularize(vert_weights) 
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       return (hor_weights, vert_weights) 

    

   # We use a 4-connected grid connecting the pixels 

   def add_grid_edges(self, g, nodeids): 

       hor_struct = np.array([[0, 0, 0],  

                              [0, 0, 1], 

                              [0, 0, 0]]) 

        

       vert_struct = np.array([[0, 0, 0],  

                               [0, 0, 0], 

                               [0, 1, 0]])       

        

       hor_weights, vert_weights = self.compute_grid_weights() 

                

       g.add_grid_edges(nodeids, weights=hor_weights, structure=hor_

struct, symmetric=True) 

       g.add_grid_edges(nodeids, weights=vert_weights, structure=ver

t_struct, symmetric=True) 

        

   # Compute t-links depending on the likelihood of a pixel's label

(object or background) 

   # belonging to a given colour histogram bin 

   def compute_tlinks(self, seed_mask): 

       s_tlinks = np.zeros(self.shape) # background 

       t_tlinks = np.zeros(self.shape) # object 

        

       bgr_indices = seed_mask == self.bgr_value 

       obj_indices = seed_mask == self.obj_value 

        

       bgr_labels = self.label_mask[seed_mask == self.bgr_value] 

       obj_labels = self.label_mask[seed_mask == self.obj_value] 

        

       bgr_size = np.sum((bgr_indices).astype('d')) 

       obj_size = np.sum((obj_indices).astype('d')) 

        

       bgr_likelihoods = np.zeros(self.shape, 'd') 

       obj_likelihoods = np.zeros(self.shape, 'd') 

        

       for label in range(self.bins_per_channel**3): 

           if bgr_size > 0: 

               bgr_cluster_size = np.sum((bgr_labels == label).astyp

e('d')) 

               bgr_cluster_size = max(bgr_cluster_size, 1) 

               bgr_likelihoods[self.label_mask == label] = bgr_clust

er_size / bgr_size 

                

           if obj_size > 0: 

               obj_cluster_size = np.sum((obj_labels == label).astyp

e('d')) 

               obj_cluster_size = max(obj_cluster_size, 1) 

               obj_likelihoods[self.label_mask == label] = obj_clust

er_size / obj_size 

                

       s_tlinks = -np.log(obj_likelihoods) 

       t_tlinks = -np.log(bgr_likelihoods) 

        

       self.regularize(s_tlinks, False) 



20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 5/46

       self.regularize(t_tlinks, False) 

            

       return (s_tlinks, t_tlinks) 

    

   # Greyscale function to evaluate which pixels in img have intensi

ty in 

   # the percentile range [lower, upper) 

   def get_pixels_in_range(self, img, lower, upper): 

       lower_bound = np.percentile(img, lower) 

        

       if abs(upper - 100) < 0.01: 

           upper_bound = np.max(img) + 1 

       else: 

           upper_bound = np.percentile(img, upper) 

            

       return np.logical_and(img >= lower_bound, img < upper_bound) 

    

   # Compute the label_mask based on a colour histogram 

   def compute_label_mask(self): 

       bins = self.bins_per_channel 

        

       red_img = self.img[:,:,0] 

       green_img = self.img[:,:,1] 

       blue_img = self.img[:,:,2] 

        

       label_mask = np.full(self.shape, bins**3) 

       voxel_width = 100.0 / bins 

        

       for r in range(bins): 

           r_lower = voxel_width * r 

           r_upper = voxel_width * (r+1) 

                

           r_in_range = self.get_pixels_in_range(red_img, r_lower, r

_upper) 

            

           for g in range(bins): 

               g_lower = voxel_width * g 

               g_upper = voxel_width * (g+1) 

                

               g_in_range = self.get_pixels_in_range(green_img, g_lo

wer, g_upper) 

                

               for b in range(bins): 

                   b_lower = voxel_width * b 

                   b_upper = voxel_width * (b+1) 

                   b_in_range = self.get_pixels_in_range(blue_img, b

_lower, b_upper) 

                    

                   in_bin = np.logical_and(r_in_range, g_in_range, b

_in_range) 

                   index = b + bins*g + (bins**2)*r 

                    

                   label_mask[in_bin] = index 

                    

       self.k = bins**3 

       return label_mask 
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   # This is the "main" function. The framework of the algorithm is

performed here. 

   def compute_labels(self): 

       seed_mask = self.seed_mask 

        

       epsilon = 0.01 

       delta = 1 

        

       while delta > epsilon: 

           g = maxflow.GraphInt() 

           nodeids = g.add_grid_nodes(self.shape) 

           # Add weighted grid edges (n-links) 

           self.add_grid_edges(g, nodeids) 

           # Compute weights for colour consistency t-links  

           s_tlinks, t_tlinks = self.compute_tlinks(seed_mask) 

           # Add t-links to graph 

           g.add_grid_tedges(nodeids, s_tlinks, t_tlinks) 

           # Compute min cut segments 

           g.maxflow() 

           sgm = g.get_grid_segments(nodeids) 

           label_mask = np.full(self.shape, self.none_value, dtype=

'uint8') 

           label_mask[sgm] = self.bgr_value 

           label_mask[np.logical_not(sgm)] = self.obj_value 

            

           # Compute delta to see if the algorithm should iterate ag

ain 

           changed_pixels = (seed_mask != label_mask) 

           img_size = self.shape[0]*self.shape[1] 

            

           delta = np.sum(changed_pixels) / img_size 

            

           seed_mask = label_mask 

       return label_mask 

Run segmentation algorithm

Here, we run the segmentation algorithm and save each mask in a separate directory. Greyscale images with the
masks overlayed are also saved. This allows us to inspect the accuracy of the segmentation.
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In [4]: def print_progress(index, length, current): 

   progress = (((float)(index) / length) * 10) 

   if ((int)(progress) > current): 

       print (str)((int)(progress)*10) + ('% complete' if index == 0

else '%') 

       return 1 

   return 0 

def save_mask(img, par, mask_dir): 

   mask_img_dir = 'temple_mask_images/' 

   mask_file = mask_dir + par[0]     

   mask = np.load(mask_file + '.npy') 

    

   img_grey = rgb2grey(img) * 0.7 + 0.3 

   mask_img = np.zeros(img.shape) 

   mask_img[mask == 1, 0] = img_grey[mask == 1] 

   mask_img[mask == 0, 2] = img_grey[mask == 0] 

    

   plt.imsave(mask_img_dir + par[0], mask_img) 

def run_segmentation(): 

   mask_dir = 'temple_mask/' 

   j = -1 

   a,b = 0,len(images) 

   for img, par, i in zip(images[a:b], params[a:b], range(len(images

[a:b]))): 

       app = MyGraphCuts(img, sigma=0.1, regularizer=300, bins_per_c

hannel=6) 

       filename = mask_dir + par[0] 

       np.save(filename, app.compute_labels())  

       j += print_progress(i, len(images[a:b]), j) 

       save_mask(img, par, mask_dir) 

   print 'done' 

    

# The line below is commented out because the masks are saved,  

# so we don't need to re-run the segmentation after restarting the ke

rnel 

# run_segmentation() 
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Results

Here, we present the results of our segmentation. Note that the images were rotated 90 degrees when provided
by Steven Seitz et al. I have rotated them upright for presentation purposes.
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Part 2: Visual Hull
Here is a visual description of what we do in this section from the lecture notes:

Setting up the grid

Here, we set up a 3D grid. The grid will subdivide the bounding box for the object into voxels. As such, it will
have the same world position and dimensions as the bounding box of the object.
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In [5]: class VoxelGrid: 

   def __init__(self, bound_min, bound_max, res):         

       self.bound_min = np.array(bound_min, dtype='f') 

       self.bound_max = np.array(bound_max, dtype='f') 

        

       # res is the resolution along the longest axis of the boundin

g box 

       # The width of each cubic voxel is calculated accordingly 

       self.v_width = np.max(np.array((bound_max - bound_min) / res,

dtype='f')) 

       self.shape = np.ceil(((bound_max - bound_min) / self.v_width

)).astype('i') 

        

       self.obj_mask = np.full(self.shape, True) 

       self.init_center_positions() 

        

       # Pixel dimensions of images from dataset 

       self.img_dim = (480, 640) 

        

   def get_voxels(self): 

       return self.obj_mask 

    

   def get_positions(self): 

       return self.centers 

        

   def init_center_positions(self): 

       # Center of (0,0,0) 

       min_pos = self.bound_min + 0.5*self.v_width 

        

       # Make 3D grid where each cell contains (x, y, z) position 

       pos_grid = np.stack(np.mgrid[ :self.shape[0], :self.shape[1],

:self.shape[2]].astype('f'), -1) 

        

       # Add multiples of voxel width to the center of (0,0,0) 

       pos_grid = min_pos + (pos_grid * self.v_width) 

                    

       # Concatenate ones to make homogeneous coordinates 

       pos_grid = np.concatenate((pos_grid, np.ones(np.append(self.s

hape[:3], 1), dtype='f')), axis=3) 

        

       # Transpose position vectors to column vectors 

       pos_grid = pos_grid.reshape(np.append(pos_grid.shape, 1)) 

            

       self.centers = pos_grid 

        

   def visual_hull(self, images, params, indices): 

       size = len(images) 

       j = -1 

        

       for img, par, i in zip(images, params, range(len(images))): 

           self.cull_projection(img, par) 

            

           if (int)(i / (float)(size) * 10) > j: 

               j += print_progress(i, size, j) 

        

   def get_proj_mat(self, par): 
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       K = np.reshape(par[1:10], (3,3)).astype('f') 

       R = np.reshape(par[10:19], (3,3)).astype('f') 

       T = np.reshape(par[19:22], (3,1)).astype('f') 

        

       return K.dot( np.append(R,T, axis=1) ) 

        

   def compute_pixel_projections(self, par): 

       P = self.get_proj_mat(par) 

        

       # Project the center of each voxel onto the image plane 

       proj = (P.dot(self.centers)).transpose((1, 2, 3, 0, 4)) 

        

       # Normalize the image coordinates and truncate them to get pi

xel indices 

       proj = np.concatenate(((proj[:,:,:,0]/proj[:,:,:,2]).reshape(

np.append(self.shape,1)), 

                                  (proj[:,:,:,1]/proj[:,:,:,2]).resh

ape(np.append(self.shape,1))), \ 

                             axis=3).astype('i') 

        

       proj[:,:,:,0] = np.clip(proj[:,:,:,0], 0, self.img_dim[1]-1) 

       proj[:,:,:,1] = np.clip(proj[:,:,:,1], 0, self.img_dim[0]-1) 

        

       # Images coordinates are (x,y), so we flip x and y 

       proj_trans = np.empty(proj.shape, dtype='i') 

       proj_trans[:,:,:,0] = proj[:,:,:,1] 

       proj_trans[:,:,:,1] = proj[:,:,:,0] 

        

       return proj_trans 

        

   def cull_projection(self, img, par): 

       img_mask = self.load_mask(par) 

        

       proj = self.compute_pixel_projections(par) 

       #valid = np.logical_and(proj[:,:,:,1] >=0, np.logical_and(pro

j[:,:,:,1] < img.shape[0], \ 

       #                       np.logical_and(proj[:,:,:,0] >= 0, pr

oj[:,:,:,0] < img.shape[1]))) 

        

       #self.obj_mask[valid] = np.logical_and(self.obj_mask[valid],

img_mask[proj[valid][:,1], proj[valid][:,0]] == 0) 

       self.obj_mask = np.logical_and(self.obj_mask, img_mask[proj

[:,:,:,0], proj[:,:,:,1]] == 0) 

        

   def load_mask(self, par): 

       mask_dir = 'temple_mask/' 

       img_name = par[0] 

        

       return np.load(mask_dir + img_name + '.npy') 

Initializing the grid

The parameters of the bounding box used below were provided in 'temple/README.txt' alongside the dataset.
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In [6]: # Set up the voxel grid 

bound_min = np.array([-0.054568, 0.001728, -0.042945]) 

bound_max = np.array([0.047855, 0.161892, 0.032236]) 

grid_resolution = 2**9 

def init_grid(): 

   return VoxelGrid(bound_min, bound_max, grid_resolution) 

    

grid = init_grid() 

Running the visual hull

After running the graph cuts, some of the images had object pixels marked as background pixels. This could
have been solved by:

playing with image-independent parameters
a more robust algorithm
a semi-supervised algorithm
simply discard undesirable images

I have opted to discard the undesirable images. This is partly due to time constraints and partly because the
project specifications explicitly said that we were allowed to use a subset of the images. That being said, you will
see in the cell below that the number of remaining images is still reasonable.
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In [7]: def run_visual_hull(): 

   # Run the visual hull using a subset of the sample images 

   sample_indices = [0,2,3,4,5,8,9,10,11,12,14,15,16,17,18,19,20, 

                     21,22,23,31,32,33,34,35,36,37,38,39,40,41,42, 

                     43,48,49,50,51,52,53,54,61,62,63,64,65,66,67, 

                     68,74,76,77,78,79,80,84,85,86,87,88,89, 

                     96,97,98,99,100,101,102,103,104,105,106,107, 

                    108,109,116,117,118,119,120,121,122,123,124,125,

126, 

                    130,131,132,134,138,139,140,142,144,145,146,147, 

                    148,149,150,151,152,153,154,155,156,157,158,159,

160,161, 

                    163,165,166,167,168,169,170,171,172,174,175,176,

177,178, 

                    180,181,182,183,184,185,186,187,188,189,190,191,

192, 

                    194,195,196,197,198,199,200,201,202,203,204,205,

206, 

                    207,208,209,210,211,212,213,214,215,216,217,218,

219, 

                    221,222,223,224,225,226,227,228,229,230,231,232, 

                    233,234,235,236,237,239,240,241,242,244,246,247, 

                    248,249,250,251,252,253,254,255,262,263,264,265, 

                    268,271,273,274,275,279,286,287,288,293,296,297, 

                    303,306,308,311] 

   sample_images = np.array(images)[sample_indices] 

   sample_params = np.array(params)[sample_indices] 

   grid.visual_hull(sample_images, sample_params, sample_indices) 

   print 'done' 

    

# run_visual_hull() 

Rendering the voxel grid

Here, the object's voxels are rendered using Mayavi.

In [8]: def plot_voxels(grid): 

   voxels = grid.get_voxels() 

    

   # Transpose and flip axes to get the proper view 

   voxels = voxels.transpose((0,2,1))[:,::-1,:] 

    

   xx, yy, zz = np.where(voxels == 1) 

   mayavi.mlab.points3d(xx,yy,zz, 

                       mode='cube', 

                       color=(0.5,0.5,0.5), 

                       scale_factor=1) 

   mayavi.mlab.show() 

    

# plot_voxels(grid) 



20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 15/46

Results

Here, we can see the results of our visual hull algorithm. This library uses flat shading for different faces of each
voxel. Since all voxels are aligned (rotationally), the camera has been positioned carefully so that we can see the
details of the model. If the camera was near perpendicular to any of the voxel faces, the object appeared as a
blob (a shape shaded with a single colour). Even some of the provided images are better than others due to this
limitation. Ideally, we would use a surface interpolation algorithm (e.g., marching cubes) and lambertian shading
(although, that would require substantial effort and is beyond the scope of this project).
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Part 3: Photoconsistency
To start, we need to estimate the visibility of any given voxel. For illustration purposes, here is the corresponding
course lecture slide:

Signed distance function

First, we need to start by getting the closest point on the surface to all voxels belonging to the visual hull. To
accomplish this, we begin by computing the signed distance function of the grid. This is computed using the fast
sweeping method described by Bridson:

Bridson, Robert. Fluid simulation for computer graphics. AK Peters/CRC Pres

s, 2015. 

In particular, we will set the distance of all surface voxels to 0. We will then sweep along each of the axes and
compute the distance of adjacent cells, replacing the current distance to the surface if the new distance is
smaller. Since the distances along any given axis may change as we update the grid, we will perform this sweep
multiple times (Bridson recommends twice). Note, the voxels inside of the object will be given negative distances
so that derivatives point towards the surface.

Implementation note

In order to make the project readable in a linear fashion, I am going to be defining functions then binding them to
the VoxelGrid class. Note that this is the same as defining the function inside the class.
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In [9]: # Define VoxelGrid class functions 

def init_distances(self): 

   # Set distance for all voxels to minus functional infinity 

   func_inf = np.max(self.bound_max - self.bound_min) 

   self.dist = np.full(self.shape, -func_inf, dtype='f') 

    

   # Set outside values to the voxel width. This will be needed to g

et the correct gradient at the surface. 

   self.dist[self.obj_mask == False] = self.v_width  

    

   # Set surface voxels to 0 

   self.set_boundary_voxels() 

# Look at the outer layer of the bounding box and set a voxel as boun

dary (distance = 0) 

# if it belongs to the object 

def set_boundary_along_border(self): 

   (self.dist[0, :, :])[self.obj_mask[0, :, :]] = 0 

   (self.dist[self.shape[0]-1, :, :])[self.obj_mask[self.shape[0]-1,

:, :]] = 0 

    

   (self.dist[:, 0, :])[self.obj_mask[:, 0, :]] = 0 

   (self.dist[:, self.shape[1]-1, :])[self.obj_mask[:, self.shape[1]

-1, :]] = 0 

    

   (self.dist[:, :, 0])[self.obj_mask[:, :, 0]] = 0 

   (self.dist[:, :, self.shape[2]-1])[self.obj_mask[:, :, self.shape

[2]-1]] = 0 

    

# Mark each object voxel as a boundary voxel (distance = 0) if one of

its adjacent voxels is outer 

def set_boundary_voxels(self): 

    

   # Start with border voxels. They are on the boundary if they belo

ng to the object 

   self.set_boundary_along_border() 

    

   # Check left voxel 

   is_boundary = np.logical_and(self.obj_mask[1:, :, :],  

                                self.obj_mask[:-1, :, :] == False) 

   (self.dist[1:self.shape[0], :, :])[is_boundary] = 0 

    

   # Check right 

   is_boundary = np.logical_and(self.obj_mask[:-1, :, :],  

                                self.obj_mask[1:, :, :] == False) 

   (self.dist[:self.shape[0]-1, :, :])[is_boundary] = 0 

    

   # Check down 

   is_boundary = np.logical_and(self.obj_mask[:, 1:, :],  

                                self.obj_mask[:, :-1, :] == False) 

   (self.dist[:, 1:self.shape[1], :])[is_boundary] = 0 

    

   # Check up 

   is_boundary = np.logical_and(self.obj_mask[:, :-1, :],  

                                self.obj_mask[:, 1:, :] == False) 

   (self.dist[:, :self.shape[1]-1, :])[is_boundary] = 0 
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   # Check in front 

   is_boundary = np.logical_and(self.obj_mask[:, :, 1:],  

                                self.obj_mask[:, :, :-1] == False) 

   (self.dist[:, :, 1:self.shape[2]])[is_boundary] = 0 

    

   # Check behind 

   is_boundary = np.logical_and(self.obj_mask[:, :, :-1],  

                                self.obj_mask[:, :, 1:] == False) 

   (self.dist[:, :, :self.shape[2]-1])[is_boundary] = 0 

    

# After initializing the boundaries, we can calculate distances for t

he object voxels 

def fast_plane_sweep(self, num_iterations=2): 

    

   for it in range(num_iterations): 

        

       # Sweep x-axis increasing 

       for i in range(self.shape[0])[1:-1]: 

           obj_voxels = self.obj_mask[i,:,:] 

           self.dist[i][obj_voxels] = np.maximum(self.dist[i][obj_vo

xels], 

                                                self.dist[i-1][obj_v

oxels] - self.v_width) 

       # Sweep x-axis decreasing 

       for i in range(self.shape[0])[::-1][1:-1]: 

           obj_voxels = self.obj_mask[i,:,:] 

           self.dist[i][obj_voxels] = np.maximum(self.dist[i][obj_vo

xels], 

                                                self.dist[i+1][obj_v

oxels] - self.v_width) 

        

       # Sweep y-axis increasing 

       for j in range(self.shape[1])[1:-1]: 

           obj_voxels = self.obj_mask[:,j,:] 

           self.dist[:,j,:][obj_voxels] = np.maximum(self.dist[:,j

,:][obj_voxels], 

                                                self.dist[:, j-1, :]

[obj_voxels] - self.v_width) 

       # Sweep y-axis decreasing 

       for j in range(self.shape[1])[::-1][1:-1]: 

           obj_voxels = self.obj_mask[:,j,:] 

           self.dist[:,j,:][obj_voxels] = np.maximum(self.dist[:,j

,:][obj_voxels], 

                                                self.dist[:, j+1, :]

[obj_voxels] - self.v_width) 

       # Sweep z-axis increasing 

       for k in range(self.shape[2])[1:-1]: 

           obj_voxels = self.obj_mask[:, :, k] 

           self.dist[:,:,k][obj_voxels] = np.maximum(self.dist[:,:,k

][obj_voxels], 

                                                self.dist[:, :, k-1]

[obj_voxels] - self.v_width) 
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       # Sweep z-axis decreasing 

       for k in range(self.shape[2])[::-1][1:-1]: 

           obj_voxels = self.obj_mask[:, :, k] 

           self.dist[:,:,k][obj_voxels] = np.maximum(self.dist[:,:,k

][obj_voxels], 

                                                self.dist[:, :, k+1]

[obj_voxels] - self.v_width) 

            

# Add padding to the distance function. This allows us to get the cor

rect gradient for surface  

# object voxels on the boundary of the grid 

def add_dist_padding(self): 

   old_dist = self.dist.copy() 

    

   self.dist = np.full( np.array(self.dist.shape) + 2, self.v_width,

dtype='f') 

   self.dist[1:-1,1:-1,1:-1] = old_dist 

    

# Bind VoxelGrid class functions 

VoxelGrid.init_distances = init_distances 

VoxelGrid.set_boundary_along_border = set_boundary_along_border 

VoxelGrid.set_boundary_voxels = set_boundary_voxels 

VoxelGrid.fast_plane_sweep = fast_plane_sweep 

VoxelGrid.add_dist_padding = add_dist_padding 

# Call VoxelGrid class functions 

# grid.init_distances() 

# grid.fast_plane_sweep() 

# grid.add_dist_padding() 

print 'done' 

Gradient of the signed distance function

Taking the derivative of the signed distance function gives us the direction of the closest point on the surface.

For the derivative, we will be using central differences.

Note that the derivatives will be computed for points between voxels (i.e., the center of the voxel faces), so it
may resemble to be forward differences when examining the code.

Then, we will compute the gradient at the grid centers. This will essentially average derivatives on either face of
a voxel and combine everything into a single structure.

(x) =f ′ f(x + h) − f(x − h)

2h

done 
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In [10]: def compute_derivatives(self): 

   self.diff_x = (self.dist[1:,:,:] - self.dist[:-1,:,:]) / self.v_w

idth 

   self.diff_y = (self.dist[:,1:,:] - self.dist[:,:-1,:]) / self.v_w

idth 

   self.diff_z = (self.dist[:,:,1:] - self.dist[:,:,:-1]) / self.v_w

idth 

   return 

  

# Compute the gradient and normalize it so that it has unit length 

# Note that the returned gradient has no padding (i.e., it has the sa

me shape as obj_mask, not dist) 

def compute_gradient(self): 

   grad_x = (self.diff_x[ :-1,1:-1,1:-1] + self.diff_x[1:  ,1:-1,1:-

1]) / 2.0 

   grad_y = (self.diff_y[1:-1, :-1,1:-1] + self.diff_y[1:-1,1:  ,1:-

1]) / 2.0 

   grad_z = (self.diff_z[1:-1,1:-1, :-1] + self.diff_z[1:-1,1:-1,1: 

]) / 2.0 

   self.gradient = np.concatenate((grad_x.reshape(grad_x.shape + (1

,)), 

                                   grad_y.reshape(grad_y.shape + (1

,)),  

                                   grad_z.reshape(grad_z.shape + (1

,))), 

                                 axis=3) 

   gradient_lengths = np.linalg.norm(self.gradient, axis=3) 

   non_zero = gradient_lengths != 0 

    

   gradient_lengths = np.concatenate((gradient_lengths.reshape((grad

ient_lengths.shape + (1,))), 

                                      gradient_lengths.reshape((grad

ient_lengths.shape + (1,))), 

                                      gradient_lengths.reshape((grad

ient_lengths.shape + (1,)))), 

                                     axis=3) 

   self.gradient[non_zero] = self.gradient[non_zero] / gradient_leng

ths[non_zero] 

# Bind VoxelGrid class functions 

VoxelGrid.compute_derivatives = compute_derivatives 

VoxelGrid.compute_gradient = compute_gradient 

# Call VoxelGrid class functions 

# grid.compute_derivatives() 

# grid.compute_gradient() 

print 'done' 

done 
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Closest surface point

We now have the distance from each voxel center to the surface and the direction of the surface (i.e., the
gradient of the signed distance function). This means that we can easily estimate the closest surface point. Since
we have already lost accuracy by discretizing the space, we will round the surface point to the nearest voxel
center so that we have access to its gradient.

In [11]: # Now that we have computed gradients, we no longer require padding.

We will remove it so that the shape 

# of self.dist matches the shape of self.gradient 

def remove_dist_padding(self): 

   if self.dist.shape[:3] != self.gradient.shape[:3]: # only for deb

ugging in case function is called twice 

       self.dist = self.dist[1:-1,1:-1,1:-1] 

# Each voxel will contain the index of the closest surface voxel 

def compute_closest_surface_point(self): 

   # Compute estimated closest surface point 

   distance = np.concatenate((self.dist.reshape(self.dist.shape + (1

,)), 

                              self.dist.reshape(self.dist.shape + (1

,)), 

                              self.dist.reshape(self.dist.shape + (1

,))), 

                             axis=3) 

    

   surface_points =  self.centers[:,:,:,:3,0] + self.gradient * dist

ance 

    

   # Convert to index of the voxel containing the point 

   self.surface_index = ((surface_points - self.bound_min ) / self.v

_width).astype('i') 

    

# Bind VoxelGrid class functions 

VoxelGrid.remove_dist_padding = remove_dist_padding 

VoxelGrid.compute_closest_surface_point = compute_closest_surface_poi

nt 

# Call VoxelGrid class functions 

# grid.remove_dist_padding() 

# grid.compute_closest_surface_point() 

print 'done' 

done 
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Camera positions

We can compute the position of a given camera center as , as seen in Assignment 2.

Note that even though we did not consider all cameras during the visual hull due to non-ideal segmentations in
some images, we can still use all cameras for photoconsistency (and we will!).

In [12]: def compute_camera_positions(): 

   cam_pos = [] 

    

   for par in params: 

       R = np.reshape(par[10:19], (3,3)).astype('f') 

       T = np.reshape(par[19:22], (3,1)).astype('f') 

        

       cam_pos.append(np.linalg.inv(R).dot(-T)) 

        

   return cam_pos 

cam_pos = np.array(compute_camera_positions()) 

fig = plt.figure(figsize = (6, 6)) 

ax = plt.subplot(111, projection='3d') 

plt.title('Camera positions') 

ax.scatter(cam_pos[:,0],cam_pos[:,2],cam_pos[:,1], c='b', marker='p') 

plt.show() 

(−T )R−1
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Occlusion of surface points

While the gradient of the inner voxels points to towards the surface, the gradients of the surface voxels
correspond to the normal of the surface. This means that we can compute whether a camera can see a point on
the surface using two tests:

If the dot product of the direction to the camera from the surface  with the surface normal  is

greater than 0 (i.e., ), then the point is (potentially) visible.
If the dot product was positive, cast a ray from the surface. If the ray intersects the object, the view is
occluded.

Given the setup of the dataset, we are guaranteed that the object is not partially outside of the image. This
means that only an occlusion test to determine is necessary (i.e., no clipping/culling is required).

For the ray casting, we will use a fast grid traversal algorithm by Amanatides and Woo:

Amanatides, John, and Andrew Woo. "A fast voxel traversal algorithm for ray

tracing." Eurographics. Vol. 87. No. 3. 1987.

dcs
→

n⃗ 

⋅ > 0dcs
→

n⃗ 
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In [13]: # Computes visibility for all object voxels 

def compute_grid_occlusion(self, camera): 

   grid_is_visible = np.full(self.shape, False, dtype='uint8') 

    

   is_visible, path = self.occlusion_test(camera.flatten()) 

   grid_is_visible[self.obj_mask] = is_visible 

    

   return (grid_is_visible, path) 

# The framework of the occlusion test 

def occlusion_test(self, camera): 

   # Test if dot product is less than 0 for visibility 

   is_visible = self.angle_check(camera)     

    

   visible_points = self.surface_points[is_visible] 

   visible_pos = self.surface_world[is_visible] 

    

   paths = [] 

   hits = [] 

    

   vis_ind = np.where(is_visible)[0] 

    

   # If a voxel passes the dot product text, cast a ray 

   for index, voxel, pos in zip(vis_ind, visible_points, visible_pos

): 

       direction = camera - pos 

       distance = np.linalg.norm(direction) 

        

       ray =  direction / distance 

        

       hit, path = self.cast_ray(ray, voxel) 

       is_visible[index] = not hit 

        

       paths.append(path) 

       hits.append(hit) 

       #if hit: 

           #print 'camera: ' + (str)(camera) 

           #print 'pos: ' + (str)(pos) 

           #print 'direction: ' + (str)(ray) 

           #return (is_visible, path) 

        

   return (is_visible, (paths, hits)) 

# Take the dot product of all surface points with the ray from the po

int to the camera.  

# Visible points have value greater than or equal to zero 

def angle_check(self, camera): 

   sw = self.surface_world 

   sp = self.surface_points 
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   return np.sum((camera - sw) * (self.gradient[sp[:,0], sp[:,1], sp

[:,2]]), axis=1) > 0 
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In [14]: # Check if the ray is occluded by the object using raytracing. This i

s the algorithm by Amanatides and Woo. 

def cast_ray(self, direct, voxel):         

   delta_x = abs(self.v_width / direct[0]) 

   delta_y = abs(self.v_width / direct[1]) 

   delta_z = abs(self.v_width / direct[2]) 

   max_x = delta_x / 2.0 

   max_y = delta_y / 2.0 

   max_z = delta_z / 2.0 

    

   i, j, k = voxel 

    

   step_x, step_y, step_z = (direct / np.abs(direct)).astype('i') 

    

   # This counter allows for a margin of error when computing estima

ted surface points 

   counter = np.zeros((3), dtype='uint8') 

    

   path = [] 

    

   while True: 

       path.append(self.centers[i, j, k, :, 0]) 

        

       if max_x < max_y: 

           if max_x < max_z: 

               i += step_x 

               counter[0] += 1 

                

               if i < 0 or i >= self.shape[0]: 

                   return (False, path) 

                    

               max_x = max_x + delta_x 

           else: 

               k += step_z 

               counter[2] += 1 

                

               if k < 0 or k >= self.shape[2]: 

                   return (False, path) 

                    

               max_z = max_z + delta_z 

       else: 

           if max_y < max_z: 

               j += step_y 

               counter[1] += 1 

                

               if j < 0 or j >= self.shape[1]: 

                   return (False, path) 

                    

               max_y = max_y + delta_y 

           else: 

               k += step_z 

               counter[2] += 1 

                

               if k < 0 or k >= self.shape[2]: 
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                   return (False, path) 

                    

               max_z = max_z + delta_z 

        

       if self.obj_mask[i,j,k] and np.max(counter) > 1: 

           return (True, path) 

        

   print "ERROR: code should not reach this point" 

In [15]: # Declare array containing the index of all surface points and the wo

rld coordinates of those points 

def init_surface_points(self): 

   self.surface_points = self.surface_index[self.obj_mask] 

    

   sp = self.surface_points 

   self.surface_world = self.centers[sp[:,0], sp[:,1], sp[:,2], :3, 

0] 

In [16]: # Bind VoxelGrid class functions 

VoxelGrid.init_surface_points = init_surface_points 

VoxelGrid.angle_check = angle_check 

VoxelGrid.occlusion_test = occlusion_test 

VoxelGrid.cast_ray = cast_ray 

VoxelGrid.compute_grid_occlusion = compute_grid_occlusion 

In [17]: # Call VoxelGrid class functions 

# grid.init_surface_points() 

print 'done' 

done 
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Occlusion results

Although I don't call the occlusion code until the next section, it seemed that this was an appropriate place to put
some intermediate results. They are not really comprehensive. They are just sanity checks because I had some
bugs and needed visual output to fix them. Due to this fact, I decided to use a low resolution for these plots so
that I could iterate quickly.

We are going to consider one of the datasets where the camera is above the structure. For the two figures below,
the camera is red; the points visible by the camera are blue and the raytracing path is green.

In both cases, the path encounters an object voxel and terminates, so the source voxel is not blue (i.e., not
visible).

Here, we see the 3D result for the same camera. I attempted to orient the model in the same way as the first of
the two images above.
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As we can see, the pillars and most of the base are occluded by the top of the temple. This is the expected
behaviour.

Photoconsistency calculation

Next, we need to compute the photoconsistency for each of the voxels. This is illustrated in the following course
lecture slide:
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In [18]: # %matplotlib notebook 

def compute_photoconsistency(self, cameras, params): 

   self.ph_con = np.full(self.shape, 0, dtype='f') 

    

   # Store visibility of surface points for all cameras 

   print "Computing occlusions" 

   vis_arr = [] 

   j = 0 

    

   for i, cam in enumerate(cameras): 

       is_visible, path = self.compute_grid_occlusion(cam) 

                

       vis_arr.append(np.where(is_visible)) 

        

       j += print_progress(i, len(cameras), j) 

        

       # The below code was used for the occlusion results plotting 

        

       #indices = np.where(is_visible == 1) 

       #points = self.centers[indices[0], indices[1], indices[2], :

3, 0] 

        

       #if i == 218: 

       #    xx, yy, zz = np.where(is_visible == 1) 

       #    mayavi.mlab.points3d(xx,yy,zz, 

       #                 mode='cube', 

       #                 color=(0.5,0.5,0.5), 

       #                 scale_factor=1) 

       #    mayavi.mlab.show() 

        

       # return (cam, points, path) 

            

   # Compute intensity for each (voxel,camera) pair 

   print "\nComputing intensities" 

   intensities = [] 

   j = 0 

    

   for i, cam, par, vis in zip(range(len(cameras)), cameras, params,

vis_arr): 

       img = plt.imread(img_dir + par[0]) 

       pixel_coords = self.compute_pixel_projections(par)[vis[0], vi

s[1], vis[2]] 

       intensities.append(img[pixel_coords[:,0], pixel_coords[:,1]]) 

        

       j += print_progress(i, len(cameras), j) 

        

   # Compute the mean intensity for each voxel 

   intensity_sum = np.zeros(np.append(self.shape, 3), dtype='f') 

    

   for vis, intensity in zip(vis_arr, intensities): 

       intensity_sum[vis[0], vis[1], vis[2]] += intensity 

        

   mean_intensity = intensity_sum / len(cameras) 

    

   self.photo_incon = np.zeros(self.shape, dtype='f') 
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   # Compute photoinconsistency sum 

   for vis, intensity in zip(vis_arr, intensities): 

       self.photo_incon[vis[0], vis[1], vis[2]] += \ 

               np.linalg.norm(intensity - mean_intensity[vis[0], vis

[1], vis[2]], axis=1)**2 

In [19]: # Bind VoxelGrid class functions 

VoxelGrid.compute_photoconsistency = compute_photoconsistency  

In [20]: # Call VoxelGrid class functions 

# grid.compute_photoconsistency(cam_pos, params) 

print 'done' 

In [21]: # Save important data since the raytracer is slow 

save = False 

if save: 

   np.save('voxel_data/grid_shape', grid.shape) 

   np.save('voxel_data/grid_dist', grid.dist) 

   np.save('voxel_data/grid_photo_incon', grid.photo_incon) 

   np.save('voxel_data/grid_v_width', grid.v_width) 

done 
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In [22]: # Code below was used to generate occlusion plots. 

# cam, points, paths = grid.compute_photoconsistency(cam_pos, params) 

# hits = paths[1] 

# paths = paths[0] 

def plot_occlusion_path(): 

   ind = 120 

   path = np.array(paths[ind]) 

   fig = plt.figure() 

   ax = plt.subplot(111,projection='3d') 

   ax.scatter(cam[0], cam[1], cam[2], c='r') 

   ax.scatter(path[:,0], path[:,1], path[:,2], c='g') 

   ax.scatter(points[:,0], points[:,1], points[:,2], c='b') 

   plt.show() 

def plot_visibility_3d(): 

   xx, yy, zz = np.where(is_visible == 1) 

   mayavi.mlab.points3d(xx,yy,zz, 

                mode='cube', 

                color=(0.5,0.5,0.5), 

                scale_factor=1) 

   mayavi.mlab.show() 
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Graph cut

Finally, we need to perform the graph cut using the photo-inconsistencies as edge weights. This is illustrated in
the following course lecture slide:

For the source edges, we will simply connect the source to all non-object voxels with (functionally) infinite weight.
In order to decide which voxels to connect to the sink, we will use the signed distance function. A voxel will
belong to the sink if it is at least 5 times the voxel width away from the surface, each edge having (functionally)
infinite weight. For object nodes, incoming edges for any given voxel will have weight corresponding to its
photoinconsistency sum. Note that the directed edges are not symmetric according to this description.

I have decided to square the photoconsistency sum before assigning edge weights (as suggested by the project
specifications). I found that using un-squared values ensured that the graph would only classify voxels
connected to the sink as object voxels (i.e., it was minimizing the allowable surface area). However, this was
resolved by using the squared values. I also tried exponential values, but this gave the same results as quadratic
for this dataset.
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In [23]: # Load grid data so we don't need to perform raytracing again 

load = True 

if load == True: 

   grid_shape = np.load('voxel_data/grid_shape.npy') 

   grid_dist = np.load('voxel_data/grid_dist.npy') 

   grid_photo_incon = np.load('voxel_data/grid_photo_incon.npy') 

   grid_v_width = np.load('voxel_data/grid_v_width.npy') 

    

else: 

   grid_shape = grid.shape 

   grid_dist = grid.dist 

   grid_photo_incon = grid.photo_incon 

   grid_v_width = grid.v_width 
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In [24]: class ReconstructionGraphCuts: 

    

   def __init__(self): 

       self.g = maxflow.GraphInt() 

        

       self.add_nodes() 

        

       self.max_weight = 2**8-1 

       self.func_inf = self.max_weight * np.prod(grid_shape) + 1 

        

       self.photo_incon = grid_photo_incon**2 

        

       self.lower_bound = min(0, np.min(grid_photo_incon)) 

       self.upper_bound = np.max(grid_photo_incon) 

        

       self.add_node_edges() 

       self.add_st_edges() 

        

   def add_nodes(self): 

       s = grid_shape 

       self.nodeids = self.g.add_grid_nodes((s[0], s[1], s[2])) 

    

   # Link weights are regularized to be in the range [0,max_weight].

This ensures that edge weights 

   # are small integers in order to take advantage of optimizations

in the maxflow library 

   def regularize(self, weights): 

       reg_weights = np.empty(weights.shape, dtype='i') 

       reg_weights[:,:,:] = (self.max_weight) * \ 

                               (weights - self.lower_bound)/abs(self

.upper_bound - self.lower_bound) 

        

       return reg_weights 

    

   def add_right_edges(self): 

       structure = np.zeros((3,3,3), dtype='i') 

       structure[2,1,1] = 1 

        

       # Set edge weights to photoinconsistency 

       weights = np.zeros(grid_shape, dtype='f') 

       weights[:-1,:,:] = self.photo_incon[1:,:,:] 

        

       background_voxels = np.logical_not(grid_photo_incon > 0) 

        

       # Regularize weights to small integers 

       weights = self.regularize(weights) 

       # Set links to non-object voxels as infinite 

       (weights[:-1,:,:])[background_voxels[1:,:,:]] = self.func_inf 

                

       self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False) 

        

   def add_left_edges(self): 

       structure = np.zeros((3,3,3), dtype='i') 

       structure[0,1,1] = 1 
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       # Set edge weights to photoinconsistency 

       weights = np.zeros(grid_shape, dtype='f') 

       weights[1:,:,:] = self.photo_incon[:-1,:,:] 

        

       background_voxels = np.logical_not(grid_photo_incon > 0) 

        

       # Regularize weights to small integers 

       weights = self.regularize(weights) 

       # Set links to non-object voxels as infinite 

       (weights[1:,:,:])[background_voxels[:-1,:,:]] = self.func_inf 

                

       self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False) 

    

   def add_up_edges(self): 

       structure = np.zeros((3,3,3), dtype='i') 

       structure[1,2,1] = 1 

        

       # Set edge weights to photoinconsistency 

       weights = np.zeros(grid_shape, dtype='f') 

       weights[:,:-1,:] = self.photo_incon[:,1:,:] 

        

       background_voxels = np.logical_not(grid_photo_incon > 0) 

        

       weights = self.regularize(weights) 

       # Set links to non-object voxels as infinite 

       (weights[:,:-1,:])[background_voxels[:,1:,:]] = self.func_inf 

        

       self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False) 

        

   def add_down_edges(self): 

       structure = np.zeros((3,3,3), dtype='i') 

       structure[1,0,1] = 1 

        

       # Set edge weights to photoinconsistency 

       weights = np.zeros(grid_shape, dtype='f') 

       weights[:,1:,:] = self.photo_incon[:,:-1,:] 

        

       background_voxels = np.logical_not(grid_photo_incon > 0) 

        

       weights = self.regularize(weights) 

       # Set links to non-object voxels as infinite 

       (weights[:,1:,:])[background_voxels[:,:-1,:]] = self.func_inf 

        

       self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False) 

    

   def add_infront_edges(self): 

       structure = np.zeros((3,3,3), dtype='i') 

       structure[1,1,2] = 1 

        

       # Set edge weights to photoinconsistency 
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       weights = np.zeros(grid_shape, dtype='f') 

       weights[:,:,:-1] = self.photo_incon[:,:,1:] 

        

       weights = self.regularize(weights) 

        

       background_voxels = np.logical_not(grid_photo_incon > 0) 

       # Set links to non-object voxels as infinite 

       (weights[:,:,:-1])[background_voxels[:,:,1:]] = self.func_inf 

        

       self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False) 

        

   def add_behind_edges(self): 

       structure = np.zeros((3,3,3), dtype='i') 

       structure[1,1,0] = 1 

        

       # Set edge weights to photoinconsistency 

       weights = np.zeros(grid_shape, dtype='f') 

       weights[:,:,1:] = self.photo_incon[:,:,:-1] 

        

       weights = self.regularize(weights) 

        

       background_voxels = np.logical_not(grid_photo_incon > 0) 

       # Set links to non-object voxels as infinite 

       (weights[:,:,1:])[background_voxels[:,:,:-1]] = self.func_inf 

        

       self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False) 

    

   def add_node_edges(self): 

       self.add_right_edges() 

       self.add_left_edges() 

       self.add_up_edges() 

       self.add_down_edges() 

       self.add_behind_edges() 

       self.add_infront_edges() 

    

   def add_st_edges(self): 

       source_weights = np.zeros(grid_shape, dtype='f') 

       sink_weights = np.zeros(grid_shape, dtype='f') 

       sdf = grid_dist 

        

       # Compute source weights                 

       boundary_voxels = (sdf == grid_v_width) 

       source_weights[boundary_voxels] = self.func_inf 

                        

       # Compute sink weights 

       sink_voxels = sdf < grid_v_width * -5 

       sink_weights[sink_voxels] = self.func_inf 

        

       # Add terminal edges 

       self.g.add_grid_tedges(self.nodeids, source_weights, sink_wei

ghts) 
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   def run(self): 

       self.g.maxflow() 

    

   def get_segments(self): 

       return self.g.get_grid_segments(self.nodeids) 

In [25]: print 'start' 

# Run graph cut 

# rgc = ReconstructionGraphCuts() 

# rgc.run() 

print 'done' 

Results

Let's see the reconstructed surface using our photoconsistency graph cut.

In [26]: def plot_reconstruction(): 

   xx, yy, zz = np.where(rgc.get_segments() == 1) 

    

   mayavi.mlab.points3d(xx,yy,zz, 

                mode='cube', 

                color=(0.5,0.5,0.5), 

                scale_factor=1) 

    

   mayavi.mlab.show() 

    

# plot_reconstruction() 

start 

done 
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I am not sure whether to blame the dataset or the resolution, but it is honestly hard to tell whether this is the
"correct" surface reconstruction. In my opinion the roof of the temple looks more crisp (less blob-like) than the
surface provided by the visual hull. However, this is subjective, so let's try to systematically demonstrate that the
algorithm is working.

Let's start by rendering just the voxels connected to the sink.

In [27]: def plot_sink(): 

   xx, yy, zz = np.where(grid_dist < grid_v_width * -5) 

    

   mayavi.mlab.points3d(xx,yy,zz, 

                mode='cube', 

                color=(0.5,0.5,0.5), 

                scale_factor=1) 

    

   mayavi.mlab.show() 

# plot_sink() 
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As we can see, the sink is simply connected to the deeply embedded voxels. The columns of the temple are
substantially narrower than those belonging to the full object (i.e., compared to images presented as results to
the visual hull).

Most importantly, we can see that the reconstructed surface is not equivalent to the surface given solely by the
voxels connected to the sink.

Now, if we can also show that our final result is not equivalent to that provided by the visual hull, then we know
that the graph cut is doing its job and selectively removing voxels from the 3D model. So, let us see what
happens if we plot the voxels that belong to the visual hull but do not belong to the surface produced by the
graph cut.

In [28]: def plot_removed_voxels(): 

   xx, yy, zz = np.where(np.logical_and(grid_dist <= 0, np.logical_n

ot(rgc.get_segments() == 1))) 

    

   mayavi.mlab.points3d(xx,yy,zz, 

                mode='cube', 

                color=(0.5,0.5,0.5), 

                scale_factor=1) 

    

   mayavi.mlab.show() 

    

# plot_removed_voxels() 
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As we can see, the algorithm is clearly removing voxels from the visual hull to provide the final surface
reconstruction. This confirms that our algorithm is indeed working and it is selectively removing voxels with poor
photoconsistency. So, we have succeeded!

Lessons from the project

Here, I just wanted to make some notes about some shortcomings of the methodology used in this project in
case I decide to pursue something along these lines in the future.

When performing the segmentation for the visual hull, it is important to have conservative segmentation
(assuming that you plan to use a photoconsistency graph cut afterwards). This is because the photoconsistency
approach, as it has been described and implemented, cannot restore voxels after they have been culled by the
visual hull. So if the segmentation algorithm incorrectly classifies an object pixel as a background pixel, there will
be a hole in the final model.

When testing the photoconsistency graph cut, it is good if the visual hull has performed poorly and a lot of the
features are missing. This is of course resolution dependent (i.e., the visual hull needs to perform even worse for
lower resolutions). The reason for this is because it is difficult to tell if the photoconsistency graph cut has
improved the model if the visual hull has already provided a surface that is indistinguishable from correct.

The final lesson is to NEVER implement a raytracer in python!!! Even at the final resolutions that I used in this
report, the raytracing took 3 hours. I tried to double the resolution and run it overnight. It completed after 10
hours, but I did not save the data correctly so I was unfortunately stuck with the lower resolution images.
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