
20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 1/46

Final Project : Volumetric Surface Reconstruction

by Spencer Van Leeuwen

In [1]: %matplotlib inline

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import mayavi.mlab

import numpy as np

import math

import matplotlib.pyplot as plt

import maxflow

from skimage import img_as_ubyte

from skimage.color import rgb2grey

from skimage.color import rgb2hsv

Part 1 : Segmentation

Loading the dataset

First, we start by loading the dataset. I will be using the temple dataset by Steven Seitz et al.
(http://grail.cs.washington.edu/projects/mview/). All data is stored in the "temple/" directory. It contains a set of
photos of a sculpture taken from different angles.

A sample image is provided below.

http://grail.cs.washington.edu/projects/mview/

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 2/46

In "temple/temple_par.txt", we have a parameters file that starts with the number of images in the folder. Every
subsequent line has the following format:

file_name k11 k12 k13 k21 k22 k23 k31 k32 k33 r11 r12 r13 r21 r22 r23 r31 r3

2 r33 t1 t2 t3

where the projection matrix of the given camera is .

In [2]: img_dir = 'temple/'

file_root = 'temple'

params = []

with open(img_dir + file_root + '_par.txt', 'r') as f:

 for line in f:

 params.append(line.split())

num_images = params[0][0]

params = params[1:]

images = []

for par in params:

 images.append(plt.imread(img_dir + par[0]))

Segmentation of the images

I have altered the graph cuts code that I submitted for Assignment 3 so that it no longer required user input.
Instead, I initialize it by selecting high-intensity pixels as object pixels. In particular, I convert the image to
greyscale and take the pixels in the 80th percentile of intensity. K-means with was giving me trouble. K-
means could probably be used if we wanted something more general, but I figure that I might as well take
advantage of the simplicity of the dataset.

Recall that in Assignment 3, we used k-means to segment the colours then compute the t-links. As an
alternative, we were allowed to use colour histogram binning. I started off by using k-means since I already had it
implemented from Assignment 3. However, I found that the randomness made it unreliable. In particular, since
there is no longer an interactive component, poor groupings by k-means were leading to the algorithm including
the table cloth as part of the object. I couldn't find values for sigma and the regulizer that would mitigate this
problem. However, I have altered the algorithm to use colour histogram binning and this solved the problem.

Now, we are able to iteratively re-compute the weights of the t-links depending on the likelihood of an object or
background pixel being in a given bin. I iterate until < 1% of the pixels change their label from one iteration to the
next.

P = K [R ∣ T]

k = 2

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 3/46

In [3]: class MyGraphCuts:

 bgr_value = 0

 obj_value = 1

 none_value = 2

 def __init__(self, img, sigma=1, regularizer=1, bins_per_channel=

10, init_percentile=90):

 self.num_rows = img.shape[0]

 self.num_cols = img.shape[1]

 self.shape = img.shape[:2]

 self.img = img.copy().astype('d')

 self.sigma = sigma

 self.regularizer = regularizer

 self.bins_per_channel = bins_per_channel

 self.max_weight = 2**5-1

 self.t_inf = max(4*self.max_weight, regularizer*4*self.max_we

ight)

 self.label_mask = self.compute_label_mask()

 self.seed_mask = self.high_intensity_mask(init_percentile)

 # Returns pixels in the 90th percentile of intensity

 def high_intensity_mask(self, p):

 grey_img = rgb2grey(self.img)

 bright_pixels = np.percentile(grey_img, p)

 return (np.sum(self.img, axis=2) > bright_pixels).astype('i')

 # Link weights are regularized to be in the range [0,max_weight].

This ensures that edge weights

 # are small integers in order to take advantage of optimizations

in the graph cut library

 def regularize(self, weights, n_link=True):

 min_weight = np.amin(weights)

 max_weight = np.amax(weights)

 weights[:,:] = (self.regularizer if n_link else 1) * \

 (self.max_weight) * (weights - min_weight)/ab

s(max_weight - min_weight)

 # n-link weights are computed depending on the difference of pixe

l intensities

 def compute_grid_weights(self):

 hor_weights = np.zeros(self.shape, 'd')

 hor_weights[:,:-1] = np.exp(- (np.linalg.norm(self.img[:,:-1]

- self.img[:,1:], axis=2)**2 / self.sigma**2))

 self.regularize(hor_weights)

 vert_weights = np.zeros(self.shape, 'd')

 vert_weights[:-1,:] = np.exp(- (np.linalg.norm(self.img[:-1

,:] - self.img[1:,:], axis=2)**2 / self.sigma**2))

 self.regularize(vert_weights)

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 4/46

 return (hor_weights, vert_weights)

 # We use a 4-connected grid connecting the pixels

 def add_grid_edges(self, g, nodeids):

 hor_struct = np.array([[0, 0, 0],

 [0, 0, 1],

 [0, 0, 0]])

 vert_struct = np.array([[0, 0, 0],

 [0, 0, 0],

 [0, 1, 0]])

 hor_weights, vert_weights = self.compute_grid_weights()

 g.add_grid_edges(nodeids, weights=hor_weights, structure=hor_

struct, symmetric=True)

 g.add_grid_edges(nodeids, weights=vert_weights, structure=ver

t_struct, symmetric=True)

 # Compute t-links depending on the likelihood of a pixel's label

(object or background)

 # belonging to a given colour histogram bin

 def compute_tlinks(self, seed_mask):

 s_tlinks = np.zeros(self.shape) # background

 t_tlinks = np.zeros(self.shape) # object

 bgr_indices = seed_mask == self.bgr_value

 obj_indices = seed_mask == self.obj_value

 bgr_labels = self.label_mask[seed_mask == self.bgr_value]

 obj_labels = self.label_mask[seed_mask == self.obj_value]

 bgr_size = np.sum((bgr_indices).astype('d'))

 obj_size = np.sum((obj_indices).astype('d'))

 bgr_likelihoods = np.zeros(self.shape, 'd')

 obj_likelihoods = np.zeros(self.shape, 'd')

 for label in range(self.bins_per_channel**3):

 if bgr_size > 0:

 bgr_cluster_size = np.sum((bgr_labels == label).astyp

e('d'))

 bgr_cluster_size = max(bgr_cluster_size, 1)

 bgr_likelihoods[self.label_mask == label] = bgr_clust

er_size / bgr_size

 if obj_size > 0:

 obj_cluster_size = np.sum((obj_labels == label).astyp

e('d'))

 obj_cluster_size = max(obj_cluster_size, 1)

 obj_likelihoods[self.label_mask == label] = obj_clust

er_size / obj_size

 s_tlinks = -np.log(obj_likelihoods)

 t_tlinks = -np.log(bgr_likelihoods)

 self.regularize(s_tlinks, False)

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 5/46

 self.regularize(t_tlinks, False)

 return (s_tlinks, t_tlinks)

 # Greyscale function to evaluate which pixels in img have intensi

ty in

 # the percentile range [lower, upper)

 def get_pixels_in_range(self, img, lower, upper):

 lower_bound = np.percentile(img, lower)

 if abs(upper - 100) < 0.01:

 upper_bound = np.max(img) + 1

 else:

 upper_bound = np.percentile(img, upper)

 return np.logical_and(img >= lower_bound, img < upper_bound)

 # Compute the label_mask based on a colour histogram

 def compute_label_mask(self):

 bins = self.bins_per_channel

 red_img = self.img[:,:,0]

 green_img = self.img[:,:,1]

 blue_img = self.img[:,:,2]

 label_mask = np.full(self.shape, bins**3)

 voxel_width = 100.0 / bins

 for r in range(bins):

 r_lower = voxel_width * r

 r_upper = voxel_width * (r+1)

 r_in_range = self.get_pixels_in_range(red_img, r_lower, r

_upper)

 for g in range(bins):

 g_lower = voxel_width * g

 g_upper = voxel_width * (g+1)

 g_in_range = self.get_pixels_in_range(green_img, g_lo

wer, g_upper)

 for b in range(bins):

 b_lower = voxel_width * b

 b_upper = voxel_width * (b+1)

 b_in_range = self.get_pixels_in_range(blue_img, b

_lower, b_upper)

 in_bin = np.logical_and(r_in_range, g_in_range, b

_in_range)

 index = b + bins*g + (bins**2)*r

 label_mask[in_bin] = index

 self.k = bins**3

 return label_mask

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 6/46

 # This is the "main" function. The framework of the algorithm is

performed here.

 def compute_labels(self):

 seed_mask = self.seed_mask

 epsilon = 0.01

 delta = 1

 while delta > epsilon:

 g = maxflow.GraphInt()

 nodeids = g.add_grid_nodes(self.shape)

 # Add weighted grid edges (n-links)

 self.add_grid_edges(g, nodeids)

 # Compute weights for colour consistency t-links

 s_tlinks, t_tlinks = self.compute_tlinks(seed_mask)

 # Add t-links to graph

 g.add_grid_tedges(nodeids, s_tlinks, t_tlinks)

 # Compute min cut segments

 g.maxflow()

 sgm = g.get_grid_segments(nodeids)

 label_mask = np.full(self.shape, self.none_value, dtype=

'uint8')

 label_mask[sgm] = self.bgr_value

 label_mask[np.logical_not(sgm)] = self.obj_value

 # Compute delta to see if the algorithm should iterate ag

ain

 changed_pixels = (seed_mask != label_mask)

 img_size = self.shape[0]*self.shape[1]

 delta = np.sum(changed_pixels) / img_size

 seed_mask = label_mask

 return label_mask

Run segmentation algorithm

Here, we run the segmentation algorithm and save each mask in a separate directory. Greyscale images with the
masks overlayed are also saved. This allows us to inspect the accuracy of the segmentation.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 7/46

In [4]: def print_progress(index, length, current):

 progress = (((float)(index) / length) * 10)

 if ((int)(progress) > current):

 print (str)((int)(progress)*10) + ('% complete' if index == 0

else '%')

 return 1

 return 0

def save_mask(img, par, mask_dir):

 mask_img_dir = 'temple_mask_images/'

 mask_file = mask_dir + par[0]

 mask = np.load(mask_file + '.npy')

 img_grey = rgb2grey(img) * 0.7 + 0.3

 mask_img = np.zeros(img.shape)

 mask_img[mask == 1, 0] = img_grey[mask == 1]

 mask_img[mask == 0, 2] = img_grey[mask == 0]

 plt.imsave(mask_img_dir + par[0], mask_img)

def run_segmentation():

 mask_dir = 'temple_mask/'

 j = -1

 a,b = 0,len(images)

 for img, par, i in zip(images[a:b], params[a:b], range(len(images

[a:b]))):

 app = MyGraphCuts(img, sigma=0.1, regularizer=300, bins_per_c

hannel=6)

 filename = mask_dir + par[0]

 np.save(filename, app.compute_labels())

 j += print_progress(i, len(images[a:b]), j)

 save_mask(img, par, mask_dir)

 print 'done'

The line below is commented out because the masks are saved,

so we don't need to re-run the segmentation after restarting the ke

rnel

run_segmentation()

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 8/46

Results

Here, we present the results of our segmentation. Note that the images were rotated 90 degrees when provided
by Steven Seitz et al. I have rotated them upright for presentation purposes.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 9/46

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 10/46

Part 2: Visual Hull
Here is a visual description of what we do in this section from the lecture notes:

Setting up the grid

Here, we set up a 3D grid. The grid will subdivide the bounding box for the object into voxels. As such, it will
have the same world position and dimensions as the bounding box of the object.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 11/46

In [5]: class VoxelGrid:

 def __init__(self, bound_min, bound_max, res):

 self.bound_min = np.array(bound_min, dtype='f')

 self.bound_max = np.array(bound_max, dtype='f')

 # res is the resolution along the longest axis of the boundin

g box

 # The width of each cubic voxel is calculated accordingly

 self.v_width = np.max(np.array((bound_max - bound_min) / res,

dtype='f'))

 self.shape = np.ceil(((bound_max - bound_min) / self.v_width

)).astype('i')

 self.obj_mask = np.full(self.shape, True)

 self.init_center_positions()

 # Pixel dimensions of images from dataset

 self.img_dim = (480, 640)

 def get_voxels(self):

 return self.obj_mask

 def get_positions(self):

 return self.centers

 def init_center_positions(self):

 # Center of (0,0,0)

 min_pos = self.bound_min + 0.5*self.v_width

 # Make 3D grid where each cell contains (x, y, z) position

 pos_grid = np.stack(np.mgrid[:self.shape[0], :self.shape[1],

:self.shape[2]].astype('f'), -1)

 # Add multiples of voxel width to the center of (0,0,0)

 pos_grid = min_pos + (pos_grid * self.v_width)

 # Concatenate ones to make homogeneous coordinates

 pos_grid = np.concatenate((pos_grid, np.ones(np.append(self.s

hape[:3], 1), dtype='f')), axis=3)

 # Transpose position vectors to column vectors

 pos_grid = pos_grid.reshape(np.append(pos_grid.shape, 1))

 self.centers = pos_grid

 def visual_hull(self, images, params, indices):

 size = len(images)

 j = -1

 for img, par, i in zip(images, params, range(len(images))):

 self.cull_projection(img, par)

 if (int)(i / (float)(size) * 10) > j:

 j += print_progress(i, size, j)

 def get_proj_mat(self, par):

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 12/46

 K = np.reshape(par[1:10], (3,3)).astype('f')

 R = np.reshape(par[10:19], (3,3)).astype('f')

 T = np.reshape(par[19:22], (3,1)).astype('f')

 return K.dot(np.append(R,T, axis=1))

 def compute_pixel_projections(self, par):

 P = self.get_proj_mat(par)

 # Project the center of each voxel onto the image plane

 proj = (P.dot(self.centers)).transpose((1, 2, 3, 0, 4))

 # Normalize the image coordinates and truncate them to get pi

xel indices

 proj = np.concatenate(((proj[:,:,:,0]/proj[:,:,:,2]).reshape(

np.append(self.shape,1)),

 (proj[:,:,:,1]/proj[:,:,:,2]).resh

ape(np.append(self.shape,1))), \

 axis=3).astype('i')

 proj[:,:,:,0] = np.clip(proj[:,:,:,0], 0, self.img_dim[1]-1)

 proj[:,:,:,1] = np.clip(proj[:,:,:,1], 0, self.img_dim[0]-1)

 # Images coordinates are (x,y), so we flip x and y

 proj_trans = np.empty(proj.shape, dtype='i')

 proj_trans[:,:,:,0] = proj[:,:,:,1]

 proj_trans[:,:,:,1] = proj[:,:,:,0]

 return proj_trans

 def cull_projection(self, img, par):

 img_mask = self.load_mask(par)

 proj = self.compute_pixel_projections(par)

 #valid = np.logical_and(proj[:,:,:,1] >=0, np.logical_and(pro

j[:,:,:,1] < img.shape[0], \

 # np.logical_and(proj[:,:,:,0] >= 0, pr

oj[:,:,:,0] < img.shape[1])))

 #self.obj_mask[valid] = np.logical_and(self.obj_mask[valid],

img_mask[proj[valid][:,1], proj[valid][:,0]] == 0)

 self.obj_mask = np.logical_and(self.obj_mask, img_mask[proj

[:,:,:,0], proj[:,:,:,1]] == 0)

 def load_mask(self, par):

 mask_dir = 'temple_mask/'

 img_name = par[0]

 return np.load(mask_dir + img_name + '.npy')

Initializing the grid

The parameters of the bounding box used below were provided in 'temple/README.txt' alongside the dataset.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 13/46

In [6]: # Set up the voxel grid

bound_min = np.array([-0.054568, 0.001728, -0.042945])

bound_max = np.array([0.047855, 0.161892, 0.032236])

grid_resolution = 2**9

def init_grid():

 return VoxelGrid(bound_min, bound_max, grid_resolution)

grid = init_grid()

Running the visual hull

After running the graph cuts, some of the images had object pixels marked as background pixels. This could
have been solved by:

playing with image-independent parameters
a more robust algorithm
a semi-supervised algorithm
simply discard undesirable images

I have opted to discard the undesirable images. This is partly due to time constraints and partly because the
project specifications explicitly said that we were allowed to use a subset of the images. That being said, you will
see in the cell below that the number of remaining images is still reasonable.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 14/46

In [7]: def run_visual_hull():

 # Run the visual hull using a subset of the sample images

 sample_indices = [0,2,3,4,5,8,9,10,11,12,14,15,16,17,18,19,20,

 21,22,23,31,32,33,34,35,36,37,38,39,40,41,42,

 43,48,49,50,51,52,53,54,61,62,63,64,65,66,67,

 68,74,76,77,78,79,80,84,85,86,87,88,89,

 96,97,98,99,100,101,102,103,104,105,106,107,

 108,109,116,117,118,119,120,121,122,123,124,125,

126,

 130,131,132,134,138,139,140,142,144,145,146,147,

 148,149,150,151,152,153,154,155,156,157,158,159,

160,161,

 163,165,166,167,168,169,170,171,172,174,175,176,

177,178,

 180,181,182,183,184,185,186,187,188,189,190,191,

192,

 194,195,196,197,198,199,200,201,202,203,204,205,

206,

 207,208,209,210,211,212,213,214,215,216,217,218,

219,

 221,222,223,224,225,226,227,228,229,230,231,232,

 233,234,235,236,237,239,240,241,242,244,246,247,

 248,249,250,251,252,253,254,255,262,263,264,265,

 268,271,273,274,275,279,286,287,288,293,296,297,

 303,306,308,311]

 sample_images = np.array(images)[sample_indices]

 sample_params = np.array(params)[sample_indices]

 grid.visual_hull(sample_images, sample_params, sample_indices)

 print 'done'

run_visual_hull()

Rendering the voxel grid

Here, the object's voxels are rendered using Mayavi.

In [8]: def plot_voxels(grid):

 voxels = grid.get_voxels()

 # Transpose and flip axes to get the proper view

 voxels = voxels.transpose((0,2,1))[:,::-1,:]

 xx, yy, zz = np.where(voxels == 1)

 mayavi.mlab.points3d(xx,yy,zz,

 mode='cube',

 color=(0.5,0.5,0.5),

 scale_factor=1)

 mayavi.mlab.show()

plot_voxels(grid)

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 15/46

Results

Here, we can see the results of our visual hull algorithm. This library uses flat shading for different faces of each
voxel. Since all voxels are aligned (rotationally), the camera has been positioned carefully so that we can see the
details of the model. If the camera was near perpendicular to any of the voxel faces, the object appeared as a
blob (a shape shaded with a single colour). Even some of the provided images are better than others due to this
limitation. Ideally, we would use a surface interpolation algorithm (e.g., marching cubes) and lambertian shading
(although, that would require substantial effort and is beyond the scope of this project).

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 16/46

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 17/46

Part 3: Photoconsistency
To start, we need to estimate the visibility of any given voxel. For illustration purposes, here is the corresponding
course lecture slide:

Signed distance function

First, we need to start by getting the closest point on the surface to all voxels belonging to the visual hull. To
accomplish this, we begin by computing the signed distance function of the grid. This is computed using the fast
sweeping method described by Bridson:

Bridson, Robert. Fluid simulation for computer graphics. AK Peters/CRC Pres

s, 2015.

In particular, we will set the distance of all surface voxels to 0. We will then sweep along each of the axes and
compute the distance of adjacent cells, replacing the current distance to the surface if the new distance is
smaller. Since the distances along any given axis may change as we update the grid, we will perform this sweep
multiple times (Bridson recommends twice). Note, the voxels inside of the object will be given negative distances
so that derivatives point towards the surface.

Implementation note

In order to make the project readable in a linear fashion, I am going to be defining functions then binding them to
the VoxelGrid class. Note that this is the same as defining the function inside the class.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 18/46

In [9]: # Define VoxelGrid class functions

def init_distances(self):

 # Set distance for all voxels to minus functional infinity

 func_inf = np.max(self.bound_max - self.bound_min)

 self.dist = np.full(self.shape, -func_inf, dtype='f')

 # Set outside values to the voxel width. This will be needed to g

et the correct gradient at the surface.

 self.dist[self.obj_mask == False] = self.v_width

 # Set surface voxels to 0

 self.set_boundary_voxels()

Look at the outer layer of the bounding box and set a voxel as boun

dary (distance = 0)

if it belongs to the object

def set_boundary_along_border(self):

 (self.dist[0, :, :])[self.obj_mask[0, :, :]] = 0

 (self.dist[self.shape[0]-1, :, :])[self.obj_mask[self.shape[0]-1,

:, :]] = 0

 (self.dist[:, 0, :])[self.obj_mask[:, 0, :]] = 0

 (self.dist[:, self.shape[1]-1, :])[self.obj_mask[:, self.shape[1]

-1, :]] = 0

 (self.dist[:, :, 0])[self.obj_mask[:, :, 0]] = 0

 (self.dist[:, :, self.shape[2]-1])[self.obj_mask[:, :, self.shape

[2]-1]] = 0

Mark each object voxel as a boundary voxel (distance = 0) if one of

its adjacent voxels is outer

def set_boundary_voxels(self):

 # Start with border voxels. They are on the boundary if they belo

ng to the object

 self.set_boundary_along_border()

 # Check left voxel

 is_boundary = np.logical_and(self.obj_mask[1:, :, :],

 self.obj_mask[:-1, :, :] == False)

 (self.dist[1:self.shape[0], :, :])[is_boundary] = 0

 # Check right

 is_boundary = np.logical_and(self.obj_mask[:-1, :, :],

 self.obj_mask[1:, :, :] == False)

 (self.dist[:self.shape[0]-1, :, :])[is_boundary] = 0

 # Check down

 is_boundary = np.logical_and(self.obj_mask[:, 1:, :],

 self.obj_mask[:, :-1, :] == False)

 (self.dist[:, 1:self.shape[1], :])[is_boundary] = 0

 # Check up

 is_boundary = np.logical_and(self.obj_mask[:, :-1, :],

 self.obj_mask[:, 1:, :] == False)

 (self.dist[:, :self.shape[1]-1, :])[is_boundary] = 0

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 19/46

 # Check in front

 is_boundary = np.logical_and(self.obj_mask[:, :, 1:],

 self.obj_mask[:, :, :-1] == False)

 (self.dist[:, :, 1:self.shape[2]])[is_boundary] = 0

 # Check behind

 is_boundary = np.logical_and(self.obj_mask[:, :, :-1],

 self.obj_mask[:, :, 1:] == False)

 (self.dist[:, :, :self.shape[2]-1])[is_boundary] = 0

After initializing the boundaries, we can calculate distances for t

he object voxels

def fast_plane_sweep(self, num_iterations=2):

 for it in range(num_iterations):

 # Sweep x-axis increasing

 for i in range(self.shape[0])[1:-1]:

 obj_voxels = self.obj_mask[i,:,:]

 self.dist[i][obj_voxels] = np.maximum(self.dist[i][obj_vo

xels],

 self.dist[i-1][obj_v

oxels] - self.v_width)

 # Sweep x-axis decreasing

 for i in range(self.shape[0])[::-1][1:-1]:

 obj_voxels = self.obj_mask[i,:,:]

 self.dist[i][obj_voxels] = np.maximum(self.dist[i][obj_vo

xels],

 self.dist[i+1][obj_v

oxels] - self.v_width)

 # Sweep y-axis increasing

 for j in range(self.shape[1])[1:-1]:

 obj_voxels = self.obj_mask[:,j,:]

 self.dist[:,j,:][obj_voxels] = np.maximum(self.dist[:,j

,:][obj_voxels],

 self.dist[:, j-1, :]

[obj_voxels] - self.v_width)

 # Sweep y-axis decreasing

 for j in range(self.shape[1])[::-1][1:-1]:

 obj_voxels = self.obj_mask[:,j,:]

 self.dist[:,j,:][obj_voxels] = np.maximum(self.dist[:,j

,:][obj_voxels],

 self.dist[:, j+1, :]

[obj_voxels] - self.v_width)

 # Sweep z-axis increasing

 for k in range(self.shape[2])[1:-1]:

 obj_voxels = self.obj_mask[:, :, k]

 self.dist[:,:,k][obj_voxels] = np.maximum(self.dist[:,:,k

][obj_voxels],

 self.dist[:, :, k-1]

[obj_voxels] - self.v_width)

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 20/46

 # Sweep z-axis decreasing

 for k in range(self.shape[2])[::-1][1:-1]:

 obj_voxels = self.obj_mask[:, :, k]

 self.dist[:,:,k][obj_voxels] = np.maximum(self.dist[:,:,k

][obj_voxels],

 self.dist[:, :, k+1]

[obj_voxels] - self.v_width)

Add padding to the distance function. This allows us to get the cor

rect gradient for surface

object voxels on the boundary of the grid

def add_dist_padding(self):

 old_dist = self.dist.copy()

 self.dist = np.full(np.array(self.dist.shape) + 2, self.v_width,

dtype='f')

 self.dist[1:-1,1:-1,1:-1] = old_dist

Bind VoxelGrid class functions

VoxelGrid.init_distances = init_distances

VoxelGrid.set_boundary_along_border = set_boundary_along_border

VoxelGrid.set_boundary_voxels = set_boundary_voxels

VoxelGrid.fast_plane_sweep = fast_plane_sweep

VoxelGrid.add_dist_padding = add_dist_padding

Call VoxelGrid class functions

grid.init_distances()

grid.fast_plane_sweep()

grid.add_dist_padding()

print 'done'

Gradient of the signed distance function

Taking the derivative of the signed distance function gives us the direction of the closest point on the surface.

For the derivative, we will be using central differences.

Note that the derivatives will be computed for points between voxels (i.e., the center of the voxel faces), so it
may resemble to be forward differences when examining the code.

Then, we will compute the gradient at the grid centers. This will essentially average derivatives on either face of
a voxel and combine everything into a single structure.

(x) =f ′ f(x + h) − f(x − h)

2h

done

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 21/46

In [10]: def compute_derivatives(self):

 self.diff_x = (self.dist[1:,:,:] - self.dist[:-1,:,:]) / self.v_w

idth

 self.diff_y = (self.dist[:,1:,:] - self.dist[:,:-1,:]) / self.v_w

idth

 self.diff_z = (self.dist[:,:,1:] - self.dist[:,:,:-1]) / self.v_w

idth

 return

Compute the gradient and normalize it so that it has unit length

Note that the returned gradient has no padding (i.e., it has the sa

me shape as obj_mask, not dist)

def compute_gradient(self):

 grad_x = (self.diff_x[:-1,1:-1,1:-1] + self.diff_x[1: ,1:-1,1:-

1]) / 2.0

 grad_y = (self.diff_y[1:-1, :-1,1:-1] + self.diff_y[1:-1,1: ,1:-

1]) / 2.0

 grad_z = (self.diff_z[1:-1,1:-1, :-1] + self.diff_z[1:-1,1:-1,1:

]) / 2.0

 self.gradient = np.concatenate((grad_x.reshape(grad_x.shape + (1

,)),

 grad_y.reshape(grad_y.shape + (1

,)),

 grad_z.reshape(grad_z.shape + (1

,))),

 axis=3)

 gradient_lengths = np.linalg.norm(self.gradient, axis=3)

 non_zero = gradient_lengths != 0

 gradient_lengths = np.concatenate((gradient_lengths.reshape((grad

ient_lengths.shape + (1,))),

 gradient_lengths.reshape((grad

ient_lengths.shape + (1,))),

 gradient_lengths.reshape((grad

ient_lengths.shape + (1,)))),

 axis=3)

 self.gradient[non_zero] = self.gradient[non_zero] / gradient_leng

ths[non_zero]

Bind VoxelGrid class functions

VoxelGrid.compute_derivatives = compute_derivatives

VoxelGrid.compute_gradient = compute_gradient

Call VoxelGrid class functions

grid.compute_derivatives()

grid.compute_gradient()

print 'done'

done

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 22/46

Closest surface point

We now have the distance from each voxel center to the surface and the direction of the surface (i.e., the
gradient of the signed distance function). This means that we can easily estimate the closest surface point. Since
we have already lost accuracy by discretizing the space, we will round the surface point to the nearest voxel
center so that we have access to its gradient.

In [11]: # Now that we have computed gradients, we no longer require padding.

We will remove it so that the shape

of self.dist matches the shape of self.gradient

def remove_dist_padding(self):

 if self.dist.shape[:3] != self.gradient.shape[:3]: # only for deb

ugging in case function is called twice

 self.dist = self.dist[1:-1,1:-1,1:-1]

Each voxel will contain the index of the closest surface voxel

def compute_closest_surface_point(self):

 # Compute estimated closest surface point

 distance = np.concatenate((self.dist.reshape(self.dist.shape + (1

,)),

 self.dist.reshape(self.dist.shape + (1

,)),

 self.dist.reshape(self.dist.shape + (1

,))),

 axis=3)

 surface_points = self.centers[:,:,:,:3,0] + self.gradient * dist

ance

 # Convert to index of the voxel containing the point

 self.surface_index = ((surface_points - self.bound_min) / self.v

_width).astype('i')

Bind VoxelGrid class functions

VoxelGrid.remove_dist_padding = remove_dist_padding

VoxelGrid.compute_closest_surface_point = compute_closest_surface_poi

nt

Call VoxelGrid class functions

grid.remove_dist_padding()

grid.compute_closest_surface_point()

print 'done'

done

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 23/46

Camera positions

We can compute the position of a given camera center as , as seen in Assignment 2.

Note that even though we did not consider all cameras during the visual hull due to non-ideal segmentations in
some images, we can still use all cameras for photoconsistency (and we will!).

In [12]: def compute_camera_positions():

 cam_pos = []

 for par in params:

 R = np.reshape(par[10:19], (3,3)).astype('f')

 T = np.reshape(par[19:22], (3,1)).astype('f')

 cam_pos.append(np.linalg.inv(R).dot(-T))

 return cam_pos

cam_pos = np.array(compute_camera_positions())

fig = plt.figure(figsize = (6, 6))

ax = plt.subplot(111, projection='3d')

plt.title('Camera positions')

ax.scatter(cam_pos[:,0],cam_pos[:,2],cam_pos[:,1], c='b', marker='p')

plt.show()

(−T)R−1

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 24/46

Occlusion of surface points

While the gradient of the inner voxels points to towards the surface, the gradients of the surface voxels
correspond to the normal of the surface. This means that we can compute whether a camera can see a point on
the surface using two tests:

If the dot product of the direction to the camera from the surface with the surface normal is

greater than 0 (i.e.,), then the point is (potentially) visible.
If the dot product was positive, cast a ray from the surface. If the ray intersects the object, the view is
occluded.

Given the setup of the dataset, we are guaranteed that the object is not partially outside of the image. This
means that only an occlusion test to determine is necessary (i.e., no clipping/culling is required).

For the ray casting, we will use a fast grid traversal algorithm by Amanatides and Woo:

Amanatides, John, and Andrew Woo. "A fast voxel traversal algorithm for ray

tracing." Eurographics. Vol. 87. No. 3. 1987.

dcs
→

n⃗

⋅ > 0dcs
→

n⃗

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 25/46

In [13]: # Computes visibility for all object voxels

def compute_grid_occlusion(self, camera):

 grid_is_visible = np.full(self.shape, False, dtype='uint8')

 is_visible, path = self.occlusion_test(camera.flatten())

 grid_is_visible[self.obj_mask] = is_visible

 return (grid_is_visible, path)

The framework of the occlusion test

def occlusion_test(self, camera):

 # Test if dot product is less than 0 for visibility

 is_visible = self.angle_check(camera)

 visible_points = self.surface_points[is_visible]

 visible_pos = self.surface_world[is_visible]

 paths = []

 hits = []

 vis_ind = np.where(is_visible)[0]

 # If a voxel passes the dot product text, cast a ray

 for index, voxel, pos in zip(vis_ind, visible_points, visible_pos

):

 direction = camera - pos

 distance = np.linalg.norm(direction)

 ray = direction / distance

 hit, path = self.cast_ray(ray, voxel)

 is_visible[index] = not hit

 paths.append(path)

 hits.append(hit)

 #if hit:

 #print 'camera: ' + (str)(camera)

 #print 'pos: ' + (str)(pos)

 #print 'direction: ' + (str)(ray)

 #return (is_visible, path)

 return (is_visible, (paths, hits))

Take the dot product of all surface points with the ray from the po

int to the camera.

Visible points have value greater than or equal to zero

def angle_check(self, camera):

 sw = self.surface_world

 sp = self.surface_points

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 26/46

 return np.sum((camera - sw) * (self.gradient[sp[:,0], sp[:,1], sp

[:,2]]), axis=1) > 0

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 27/46

In [14]: # Check if the ray is occluded by the object using raytracing. This i

s the algorithm by Amanatides and Woo.

def cast_ray(self, direct, voxel):

 delta_x = abs(self.v_width / direct[0])

 delta_y = abs(self.v_width / direct[1])

 delta_z = abs(self.v_width / direct[2])

 max_x = delta_x / 2.0

 max_y = delta_y / 2.0

 max_z = delta_z / 2.0

 i, j, k = voxel

 step_x, step_y, step_z = (direct / np.abs(direct)).astype('i')

 # This counter allows for a margin of error when computing estima

ted surface points

 counter = np.zeros((3), dtype='uint8')

 path = []

 while True:

 path.append(self.centers[i, j, k, :, 0])

 if max_x < max_y:

 if max_x < max_z:

 i += step_x

 counter[0] += 1

 if i < 0 or i >= self.shape[0]:

 return (False, path)

 max_x = max_x + delta_x

 else:

 k += step_z

 counter[2] += 1

 if k < 0 or k >= self.shape[2]:

 return (False, path)

 max_z = max_z + delta_z

 else:

 if max_y < max_z:

 j += step_y

 counter[1] += 1

 if j < 0 or j >= self.shape[1]:

 return (False, path)

 max_y = max_y + delta_y

 else:

 k += step_z

 counter[2] += 1

 if k < 0 or k >= self.shape[2]:

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 28/46

 return (False, path)

 max_z = max_z + delta_z

 if self.obj_mask[i,j,k] and np.max(counter) > 1:

 return (True, path)

 print "ERROR: code should not reach this point"

In [15]: # Declare array containing the index of all surface points and the wo

rld coordinates of those points

def init_surface_points(self):

 self.surface_points = self.surface_index[self.obj_mask]

 sp = self.surface_points

 self.surface_world = self.centers[sp[:,0], sp[:,1], sp[:,2], :3,

0]

In [16]: # Bind VoxelGrid class functions

VoxelGrid.init_surface_points = init_surface_points

VoxelGrid.angle_check = angle_check

VoxelGrid.occlusion_test = occlusion_test

VoxelGrid.cast_ray = cast_ray

VoxelGrid.compute_grid_occlusion = compute_grid_occlusion

In [17]: # Call VoxelGrid class functions

grid.init_surface_points()

print 'done'

done

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 29/46

Occlusion results

Although I don't call the occlusion code until the next section, it seemed that this was an appropriate place to put
some intermediate results. They are not really comprehensive. They are just sanity checks because I had some
bugs and needed visual output to fix them. Due to this fact, I decided to use a low resolution for these plots so
that I could iterate quickly.

We are going to consider one of the datasets where the camera is above the structure. For the two figures below,
the camera is red; the points visible by the camera are blue and the raytracing path is green.

In both cases, the path encounters an object voxel and terminates, so the source voxel is not blue (i.e., not
visible).

Here, we see the 3D result for the same camera. I attempted to orient the model in the same way as the first of
the two images above.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 30/46

As we can see, the pillars and most of the base are occluded by the top of the temple. This is the expected
behaviour.

Photoconsistency calculation

Next, we need to compute the photoconsistency for each of the voxels. This is illustrated in the following course
lecture slide:

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 31/46

In [18]: # %matplotlib notebook

def compute_photoconsistency(self, cameras, params):

 self.ph_con = np.full(self.shape, 0, dtype='f')

 # Store visibility of surface points for all cameras

 print "Computing occlusions"

 vis_arr = []

 j = 0

 for i, cam in enumerate(cameras):

 is_visible, path = self.compute_grid_occlusion(cam)

 vis_arr.append(np.where(is_visible))

 j += print_progress(i, len(cameras), j)

 # The below code was used for the occlusion results plotting

 #indices = np.where(is_visible == 1)

 #points = self.centers[indices[0], indices[1], indices[2], :

3, 0]

 #if i == 218:

 # xx, yy, zz = np.where(is_visible == 1)

 # mayavi.mlab.points3d(xx,yy,zz,

 # mode='cube',

 # color=(0.5,0.5,0.5),

 # scale_factor=1)

 # mayavi.mlab.show()

 # return (cam, points, path)

 # Compute intensity for each (voxel,camera) pair

 print "\nComputing intensities"

 intensities = []

 j = 0

 for i, cam, par, vis in zip(range(len(cameras)), cameras, params,

vis_arr):

 img = plt.imread(img_dir + par[0])

 pixel_coords = self.compute_pixel_projections(par)[vis[0], vi

s[1], vis[2]]

 intensities.append(img[pixel_coords[:,0], pixel_coords[:,1]])

 j += print_progress(i, len(cameras), j)

 # Compute the mean intensity for each voxel

 intensity_sum = np.zeros(np.append(self.shape, 3), dtype='f')

 for vis, intensity in zip(vis_arr, intensities):

 intensity_sum[vis[0], vis[1], vis[2]] += intensity

 mean_intensity = intensity_sum / len(cameras)

 self.photo_incon = np.zeros(self.shape, dtype='f')

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 32/46

 # Compute photoinconsistency sum

 for vis, intensity in zip(vis_arr, intensities):

 self.photo_incon[vis[0], vis[1], vis[2]] += \

 np.linalg.norm(intensity - mean_intensity[vis[0], vis

[1], vis[2]], axis=1)**2

In [19]: # Bind VoxelGrid class functions

VoxelGrid.compute_photoconsistency = compute_photoconsistency

In [20]: # Call VoxelGrid class functions

grid.compute_photoconsistency(cam_pos, params)

print 'done'

In [21]: # Save important data since the raytracer is slow

save = False

if save:

 np.save('voxel_data/grid_shape', grid.shape)

 np.save('voxel_data/grid_dist', grid.dist)

 np.save('voxel_data/grid_photo_incon', grid.photo_incon)

 np.save('voxel_data/grid_v_width', grid.v_width)

done

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 33/46

In [22]: # Code below was used to generate occlusion plots.

cam, points, paths = grid.compute_photoconsistency(cam_pos, params)

hits = paths[1]

paths = paths[0]

def plot_occlusion_path():

 ind = 120

 path = np.array(paths[ind])

 fig = plt.figure()

 ax = plt.subplot(111,projection='3d')

 ax.scatter(cam[0], cam[1], cam[2], c='r')

 ax.scatter(path[:,0], path[:,1], path[:,2], c='g')

 ax.scatter(points[:,0], points[:,1], points[:,2], c='b')

 plt.show()

def plot_visibility_3d():

 xx, yy, zz = np.where(is_visible == 1)

 mayavi.mlab.points3d(xx,yy,zz,

 mode='cube',

 color=(0.5,0.5,0.5),

 scale_factor=1)

 mayavi.mlab.show()

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 34/46

Graph cut

Finally, we need to perform the graph cut using the photo-inconsistencies as edge weights. This is illustrated in
the following course lecture slide:

For the source edges, we will simply connect the source to all non-object voxels with (functionally) infinite weight.
In order to decide which voxels to connect to the sink, we will use the signed distance function. A voxel will
belong to the sink if it is at least 5 times the voxel width away from the surface, each edge having (functionally)
infinite weight. For object nodes, incoming edges for any given voxel will have weight corresponding to its
photoinconsistency sum. Note that the directed edges are not symmetric according to this description.

I have decided to square the photoconsistency sum before assigning edge weights (as suggested by the project
specifications). I found that using un-squared values ensured that the graph would only classify voxels
connected to the sink as object voxels (i.e., it was minimizing the allowable surface area). However, this was
resolved by using the squared values. I also tried exponential values, but this gave the same results as quadratic
for this dataset.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 35/46

In [23]: # Load grid data so we don't need to perform raytracing again

load = True

if load == True:

 grid_shape = np.load('voxel_data/grid_shape.npy')

 grid_dist = np.load('voxel_data/grid_dist.npy')

 grid_photo_incon = np.load('voxel_data/grid_photo_incon.npy')

 grid_v_width = np.load('voxel_data/grid_v_width.npy')

else:

 grid_shape = grid.shape

 grid_dist = grid.dist

 grid_photo_incon = grid.photo_incon

 grid_v_width = grid.v_width

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 36/46

In [24]: class ReconstructionGraphCuts:

 def __init__(self):

 self.g = maxflow.GraphInt()

 self.add_nodes()

 self.max_weight = 2**8-1

 self.func_inf = self.max_weight * np.prod(grid_shape) + 1

 self.photo_incon = grid_photo_incon**2

 self.lower_bound = min(0, np.min(grid_photo_incon))

 self.upper_bound = np.max(grid_photo_incon)

 self.add_node_edges()

 self.add_st_edges()

 def add_nodes(self):

 s = grid_shape

 self.nodeids = self.g.add_grid_nodes((s[0], s[1], s[2]))

 # Link weights are regularized to be in the range [0,max_weight].

This ensures that edge weights

 # are small integers in order to take advantage of optimizations

in the maxflow library

 def regularize(self, weights):

 reg_weights = np.empty(weights.shape, dtype='i')

 reg_weights[:,:,:] = (self.max_weight) * \

 (weights - self.lower_bound)/abs(self

.upper_bound - self.lower_bound)

 return reg_weights

 def add_right_edges(self):

 structure = np.zeros((3,3,3), dtype='i')

 structure[2,1,1] = 1

 # Set edge weights to photoinconsistency

 weights = np.zeros(grid_shape, dtype='f')

 weights[:-1,:,:] = self.photo_incon[1:,:,:]

 background_voxels = np.logical_not(grid_photo_incon > 0)

 # Regularize weights to small integers

 weights = self.regularize(weights)

 # Set links to non-object voxels as infinite

 (weights[:-1,:,:])[background_voxels[1:,:,:]] = self.func_inf

 self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False)

 def add_left_edges(self):

 structure = np.zeros((3,3,3), dtype='i')

 structure[0,1,1] = 1

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 37/46

 # Set edge weights to photoinconsistency

 weights = np.zeros(grid_shape, dtype='f')

 weights[1:,:,:] = self.photo_incon[:-1,:,:]

 background_voxels = np.logical_not(grid_photo_incon > 0)

 # Regularize weights to small integers

 weights = self.regularize(weights)

 # Set links to non-object voxels as infinite

 (weights[1:,:,:])[background_voxels[:-1,:,:]] = self.func_inf

 self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False)

 def add_up_edges(self):

 structure = np.zeros((3,3,3), dtype='i')

 structure[1,2,1] = 1

 # Set edge weights to photoinconsistency

 weights = np.zeros(grid_shape, dtype='f')

 weights[:,:-1,:] = self.photo_incon[:,1:,:]

 background_voxels = np.logical_not(grid_photo_incon > 0)

 weights = self.regularize(weights)

 # Set links to non-object voxels as infinite

 (weights[:,:-1,:])[background_voxels[:,1:,:]] = self.func_inf

 self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False)

 def add_down_edges(self):

 structure = np.zeros((3,3,3), dtype='i')

 structure[1,0,1] = 1

 # Set edge weights to photoinconsistency

 weights = np.zeros(grid_shape, dtype='f')

 weights[:,1:,:] = self.photo_incon[:,:-1,:]

 background_voxels = np.logical_not(grid_photo_incon > 0)

 weights = self.regularize(weights)

 # Set links to non-object voxels as infinite

 (weights[:,1:,:])[background_voxels[:,:-1,:]] = self.func_inf

 self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False)

 def add_infront_edges(self):

 structure = np.zeros((3,3,3), dtype='i')

 structure[1,1,2] = 1

 # Set edge weights to photoinconsistency

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 38/46

 weights = np.zeros(grid_shape, dtype='f')

 weights[:,:,:-1] = self.photo_incon[:,:,1:]

 weights = self.regularize(weights)

 background_voxels = np.logical_not(grid_photo_incon > 0)

 # Set links to non-object voxels as infinite

 (weights[:,:,:-1])[background_voxels[:,:,1:]] = self.func_inf

 self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False)

 def add_behind_edges(self):

 structure = np.zeros((3,3,3), dtype='i')

 structure[1,1,0] = 1

 # Set edge weights to photoinconsistency

 weights = np.zeros(grid_shape, dtype='f')

 weights[:,:,1:] = self.photo_incon[:,:,:-1]

 weights = self.regularize(weights)

 background_voxels = np.logical_not(grid_photo_incon > 0)

 # Set links to non-object voxels as infinite

 (weights[:,:,1:])[background_voxels[:,:,:-1]] = self.func_inf

 self.g.add_grid_edges(self.nodeids, weights=weights, structur

e=structure, symmetric=False)

 def add_node_edges(self):

 self.add_right_edges()

 self.add_left_edges()

 self.add_up_edges()

 self.add_down_edges()

 self.add_behind_edges()

 self.add_infront_edges()

 def add_st_edges(self):

 source_weights = np.zeros(grid_shape, dtype='f')

 sink_weights = np.zeros(grid_shape, dtype='f')

 sdf = grid_dist

 # Compute source weights

 boundary_voxels = (sdf == grid_v_width)

 source_weights[boundary_voxels] = self.func_inf

 # Compute sink weights

 sink_voxels = sdf < grid_v_width * -5

 sink_weights[sink_voxels] = self.func_inf

 # Add terminal edges

 self.g.add_grid_tedges(self.nodeids, source_weights, sink_wei

ghts)

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 39/46

 def run(self):

 self.g.maxflow()

 def get_segments(self):

 return self.g.get_grid_segments(self.nodeids)

In [25]: print 'start'

Run graph cut

rgc = ReconstructionGraphCuts()

rgc.run()

print 'done'

Results

Let's see the reconstructed surface using our photoconsistency graph cut.

In [26]: def plot_reconstruction():

 xx, yy, zz = np.where(rgc.get_segments() == 1)

 mayavi.mlab.points3d(xx,yy,zz,

 mode='cube',

 color=(0.5,0.5,0.5),

 scale_factor=1)

 mayavi.mlab.show()

plot_reconstruction()

start

done

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 40/46

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 41/46

I am not sure whether to blame the dataset or the resolution, but it is honestly hard to tell whether this is the
"correct" surface reconstruction. In my opinion the roof of the temple looks more crisp (less blob-like) than the
surface provided by the visual hull. However, this is subjective, so let's try to systematically demonstrate that the
algorithm is working.

Let's start by rendering just the voxels connected to the sink.

In [27]: def plot_sink():

 xx, yy, zz = np.where(grid_dist < grid_v_width * -5)

 mayavi.mlab.points3d(xx,yy,zz,

 mode='cube',

 color=(0.5,0.5,0.5),

 scale_factor=1)

 mayavi.mlab.show()

plot_sink()

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 42/46

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 43/46

As we can see, the sink is simply connected to the deeply embedded voxels. The columns of the temple are
substantially narrower than those belonging to the full object (i.e., compared to images presented as results to
the visual hull).

Most importantly, we can see that the reconstructed surface is not equivalent to the surface given solely by the
voxels connected to the sink.

Now, if we can also show that our final result is not equivalent to that provided by the visual hull, then we know
that the graph cut is doing its job and selectively removing voxels from the 3D model. So, let us see what
happens if we plot the voxels that belong to the visual hull but do not belong to the surface produced by the
graph cut.

In [28]: def plot_removed_voxels():

 xx, yy, zz = np.where(np.logical_and(grid_dist <= 0, np.logical_n

ot(rgc.get_segments() == 1)))

 mayavi.mlab.points3d(xx,yy,zz,

 mode='cube',

 color=(0.5,0.5,0.5),

 scale_factor=1)

 mayavi.mlab.show()

plot_removed_voxels()

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 44/46

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 45/46

As we can see, the algorithm is clearly removing voxels from the visual hull to provide the final surface
reconstruction. This confirms that our algorithm is indeed working and it is selectively removing voxels with poor
photoconsistency. So, we have succeeded!

Lessons from the project

Here, I just wanted to make some notes about some shortcomings of the methodology used in this project in
case I decide to pursue something along these lines in the future.

When performing the segmentation for the visual hull, it is important to have conservative segmentation
(assuming that you plan to use a photoconsistency graph cut afterwards). This is because the photoconsistency
approach, as it has been described and implemented, cannot restore voxels after they have been culled by the
visual hull. So if the segmentation algorithm incorrectly classifies an object pixel as a background pixel, there will
be a hole in the final model.

When testing the photoconsistency graph cut, it is good if the visual hull has performed poorly and a lot of the
features are missing. This is of course resolution dependent (i.e., the visual hull needs to perform even worse for
lower resolutions). The reason for this is because it is difficult to tell if the photoconsistency graph cut has
improved the model if the visual hull has already provided a surface that is indistinguishable from correct.

The final lesson is to NEVER implement a raytracer in python!!! Even at the final resolutions that I used in this
report, the raytracing took 3 hours. I tried to double the resolution and run it overnight. It completed after 10
hours, but I did not save the data correctly so I was unfortunately stuck with the lower resolution images.

20/12/2018 project

http://localhost:8888/nbconvert/html/project.ipynb?download=false 46/46

References

The approach used for each step of this project was my own (following the course slides). I did not reference any
research paper or textbook describing how the volumetric surface reconstruction should be implemented. The
resources that I used were mainly simple algorithms for 3D grids that I couldn't remember the details of.

Here are my references:

Dataset by Steven Seitz et al. (http://grail.cs.washington.edu/projects/mview/)
Bridson, Robert. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.
Amanatides, John, and Andrew Woo. "A fast voxel traversal algorithm for ray tracing." Eurographics.
Vol. 87. No. 3. 1987.
Lecture 9 of the course slides

http://grail.cs.washington.edu/projects/mview/

