
Animating Fire

Spencer Van Leeuwen
University of Waterloo

Figure 1: 3D fire animations

Abstract

This is a report for my final project in the course Physically-Based
Animation. The goal of my project was to implement a fire simu-
lator. In this report, I discuss how I implemented the simulator and
the results.

1 Introduction

From an explorer carrying a torch to a dragon wreaking havoc on a
village, the ability to animate fire is extremely important for artistic
expression. Physically-based animation and rendering of fire was
introduced to the computer graphics community by [Nguyen et al.
2002]. When modelling fire, they model the fuel and flames as a
two-phase flow. They also allow their fire to produce smoke as it
cools, using concepts from [Fedkiw et al. 2001]. The model has
also been extended by [Hong et al. 2007] to introduce wrinkled and
cellular patterns into the flames. For this project, I have worked to-
wards implementing these papers. In the following sections, I will
describe the concepts and implementation details of my project, fol-
lowed by a short discussion.

2 Overview

2.1 Basic Fluid Simulation Framework

When building any semi-Lagrangian fluid simulator, whether we
want to simulate a liquid or a gas, there are several common ele-
ments that must be implemented. For this section, I followed the
instruction of [Bridson 2015], which is the standard textbook for
fluid simulation in computer graphics.

First, we want to store our velocities and pressures on a staggered
grid, where the pressures are stored at grid centres and velocities
are stored at the centre of the faces between elements, see Figure 2.
We will store the pressures in p and the velocities for the x-, y-, and
z-axis in u, v and w, respectively. We can think of this as separate
grids when storing the data, but we must relate these structures back
to the staggered grid structure. For example, the location of ui,j,k
on the staggered grid is the same as the location of pi−0.5,j,k. Note
that if p has dimensions nx×ny×nz , then u will have dimensions
nx + 1× ny × nz , and similarly for v and w.

Our goal in a basic fluid simulator is to solve the Euler equations

Figure 2: 2D representation of a staggered grid, taken from [Brid-
son 2015]

for describing inviscid, incompressible fluid flow:

D~u

Dt
+

1

ρ
∇p = ~g,

∇ · ~u = 0,

(1)

where ~u the velocity of the fluid; D~u
Dt

is the material derivative of
the velocity; ρ is the density; p is the pressure; and ~g is gravity.

2.1.1 Advection

To calculate D~u
Dt

, we perform semi-Lagrangian advection using a
time integration scheme; in particular, I used Runge-Kutta 3:

k1 = f(qn),

k2 = f(qn +
1

2
∆tk1),

k3 = f(qn +
3

4
∆tk2),

qn+1 = qn +
2

9
∆tk1 +

3

9
∆tk2 +

4

9
∆tk3,

(2)

where qn is a quantity q at the nth time step and f is some function.
When advecting, q corresponds to what we are advecting, in this
case velocity, and f is a function that gets the velocity at the point
passed to it. During advection, we often need velocity values at
points that do not lie on the grid, so we need to perform some sort
of interpolation. For interpolation, I used a function for monotonic
cubic interpolation introduced by [Fedkiw et al. 2001]:

f(t) = a3(t− tk)3 + a2(t− tk)2 + a1(t− tk) + a0, (3)

where

a3 = dk + dk+1 −∆k,

a2 = 2∆k − 2dk − dk+1,

a1 = dk,

a0 = fk

and

dk =
(fk+1 − fk−1)

2
,∆k = fk+1 − fk,

which can be easily extended to 2 or 3 dimensions. The reason we
want cubic interpolation is because linear interpolation is too dis-
sipative and can cause artifacts. We will see later why we want a
monotonic interpolator. After close inspection, it becomes obvious
that cubic interpolation near the edges will sample outside the stag-
gered grid. To handle this case, I padded the outside of the grid with
default values, e.g. velocity was set to 0.

2.1.2 Forces

After advection, we apply forces. For now, this just means adding
gravity to each element in v.

2.1.3 Pressure

Next, we want to update the pressure with values that enforce in-
compressibility. First, we solve the equation

Ap = b, (4)

where A is the Laplacian matrix for the velocities and b is the di-
vergence of the velocity at each point on the pressure grid. This
is the main reason that we use a staggered grid, it makes it easy to
perform central differences to get the divergence. We solve for p
using conjugate gradient, I used the ViennaCL library for this. It is
also possible to precondition the matrix for faster solves, but I did
not. After solving for p, we update the velocities:

~un+1 = ~u−∆t
1

ρ
∇p. (5)

2.2 Smoke

To simulate smoke, we need to add new values for advection, add
two new kinds of forces, and render the smoke. For forces, we
replace gravity with the following:

f = fbuoy + fconf , (6)

where fbuoy is buoyancy and fconf is vorticity confinement.

2.2.1 Advection

When simulating smoke, we add values for soot concentration, s,
and temperature, T , to the grid centres. We advect the soot and
temperature using (2) with q as the value for soot or temperature,
respectively, and f is the velocity as before. Note that the soot
concentration must be between 0 and 1, which is why we are using a
monotonic cubic interpolator; the monotonicity ensures that we do
not overshoot the data. Since I used the concentration for rendering,
I still found it necessary to clamp the concentrations because it is
still possible to get values above 1 due to numerical error.

2.2.2 Buoyancy

The equation for buoyancy is

[αs− β(T − Tamb)]~g, (7)

where α and β are positive constants, and Tamb is ambient temper-
ature, 273◦K. As suggested by [Bridson 2015], I used

α =
ρsoot − ρair

ρair
,

β =
1

Tamb
,

where I set ρair = 1.3 and ρsoot = ρflames, which I will define
later. The reason we choose these values of α and β is that we are
making a Boussinesq approximation, where we assume that

|αs− β∆T | << 1.

2.2.3 Vorticity Confinement

When advecting velocities at lower grid resolutions, the curl veloc-
ity is unnaturally dissipated. To correct this error, [Fedkiw et al.
2001] introduced vorticity confinement to reintroduce the curl. The
force for vorticity confinement is

fconf = ε∆x(~N × ~ω), (8)

where ε is a scaling factor to vary how much curl is added in. Since
this is not physically correct, it is difficult to choose a value that
is correct for all situations. For example, a column of smoke may
require higher vorticity to look real, while a smoke ring would not
even retain shape with high vorticity. I demonstrate the visual dif-
ference between varying constants in the accompanying video. We
scale by ∆x since the error disappears as the resolution is refined,
so we want vorticity confinement to disappear at high resolutions.
To calculate ~N × ~ω, we use

~ω = ∇× ~u, (9)

~N =
∇‖~ω‖
‖∇~ω‖ , (10)

both of which are calculated using central differences. However, to
avoid dividing by 0, it is better to use

~N =
∇‖~ω‖

‖∇~ω‖ − 10−20M
, (11)

where

M =
1

∆x∆t
.

Figure 3: 2D fire animations

2.3 Fire

When simulating fire, we simulate two fluids, fuel and flames, sep-
arated by a level set. This section covers general concepts needed to
simulate fire and specific implementation details from my project.

2.3.1 Level Set

We define values for the level set, φ, at the centre of grid elements as
the distance from the zero isocontour in the flames, and the negative
distance in the fuel region. For evolving the level set, we use the
following equation:

∂φ

∂t
+ ~ufuel · ∇φ = S, (12)

where S is the burn rate of the fuel. I set S = 0.08 in 2D and
S = 0.2 in 3D. So, to update the level set, we advect it using
semi-Lagrangian advection, then add ∆tS to the advected value.
It is also necessary to redistance the level set occasionally; I redis-
tance the level set at every time step using the fast sweeping method
[Zhao 2005].

2.3.2 Jump Conditions

In this section, we describe what happens near the zero isocontour
or when we cross it during advection. Near the zero isocontour, we
have

~uflames = ~ufuel + ∆V n̂

= ~ufuel +

(
ρfuel
ρflames

− 1

)
Sn̂.

(13)

Reducing ρfuel results in fuller flames. In my implementation, I
set ρfuel = 1 and adjusted ρfuel, e.g. ρflames = 0.01 in 3D
examples, to get different effects. When advecting from one fluid
to the other, we add or subtract ∆V n̂ to get the correct velocity.

It is also necessary to correct the velocities when calculating the
divergence for the values in b from (4). This is important because
it causes the fuel to expand. For each grid element with φ > 0 at
the centre, we increment each adjacent grid element with φ ≤ 0 at
the centre by ∆V n̂. Additionally, it possible to account for variable
density in A from (4), but I did not.

2.3.3 Temperature

[Nguyen et al. 2002] discusses several methods for advecting tem-
perature, but I chose the simplest method. First, inside the fuel re-
gion, we set the temperature to always be Tignition, which I chose
to be 1000◦K. Then, when we are advecting a value in the flame
region and we need to get a temperature from the fuel region, we
set the temperature to Tmax, which I chose to be 2000◦K.

When advecting within the flame region, it is also necessary for the
temperature to decay over time. For the decay, we use the equation

DT

Dt
= −c

(
T − Tamb

Tmax − Tambient

)4

. (14)

[Bridson 2015] converts (14) to the following update:

Tn+1 = Tamb+

[
1

(T̃ − Tamb)3
+

3c∆t

(Tmax − Tamb)4

]− 1
3

, (15)

where T̃ is the advected temperature and c is a cooling constant.
When I was trying to find a good value for c, it was hard to find an
actual ”constant” that worked, so I set c = 10−5T 2

max.

2.3.4 Advecting Soot

When animating fire, we advect soot along with the flames so that
the fire can produce smoke as it cools. However, if we add soot
to the fuel region then it causes an upward draft in the fuel due to
buoyancy which I did not like. To resolve the issue, I set the fuel to
zero in the fuel region at each time step, and when advecting from
the flames into the fuel region, I set the soot in the flames to 0.5.

2.3.5 Adding Fuel

For adding fuel, I added a boolean at the grid centres to indicate
whether the grid element was a source of fuel. At each time step,
I would manually set the velocity at sources. I took two different
approaches to update the level set. In Figure 3 (right), I set each
of the level set values at the sources to −1. In Figure 1 and Figure
3 (left), I used a function to add spheres, or circles in 2D, of fuel
given a centre and a radius. When setting the source values, the grid
element was a source if the centre of the grid element was in the
sphere. To update the level set, I iterated over the grid and for each
point in the sphere, I set the level set value to the negative distance
to the surface of the sphere. When using either level surface update
technique, I redistanced the level set afterwards.

2.3.6 Detonation Shock Dynamics

In [Hong et al. 2007], the authors introduced the use of detonation
shock dynamics (DSD) equations to evolve the burn rate, S, of the
level set. To accomplish this, we replace S in (12) with the result
of evaluating third order DSD equations. I will not go into depth
how this is done specifically since it is not particularly enlighten-
ing. The most important detail to note is that the burn rate will be
dependent on the mean curvature of the surface. After calculating
the mean curvature, it is necessary to extrapolate the values for the
mean curvature in one direction away from the zero isocontour; the
authors did not specify which direction, so I extrapolated outwards
into the flames. Additionally, there are many tunable parameters
included in the model which affect the overall appearance of the
flames. [Hong et al. 2007] also includes an additional jump condi-
tion for the temperature that they did not explain well enough for
me to include.

2.4 Rendering

2.4.1 Smoke Colour

In 2D, I rendered smoke when the flames dropped below Tignition.
The colour of the smoke was the concentration multiplied by each
of the colour channels of 0xFFFFFF to get varying shades of grey.
In 3D, I did not render smoke because it would have been too much
work to account for translucency and I wanted to be able to see the
fire completely.

2.4.2 Fire Colour

In the animations, I made the fuel blue, but in physically-based
rendering the fuel would be invisible. To render the flames, I used
Planck’s formula for blackbody radiation,

L(T, λ) =
2C1

λ5(eC2/(λT) − 1)
, (16)

where T is the temperature, λ is the wavelength, C1 ≈ 3.7418 ·
10−16Wm2, and C2 ≈ 1.4388 · 10−2m◦K [Nguyen et al. 2002].
We sample wavelengths between 400nm and 700nm at 10nm in-
tervals. Then we integrate the samples to CIE XYZ and convert
from CIE XYZ to RGB. I used functions from PBRT [Pharr and
Humphreys 2004] to perform these calculations. After converting
to RGB, I performed a gamma correction with γ = 2.2. Since I did
not want to scale the RGB values and CIE XYZ contains colours
outside the RGB colour space, I clamped each of the RGB values. I
also passed twice the temperature to Planck’s formula to get correct
variation in the flames. I did this instead of adjusting the tempera-
ture because I did not want the flames to rise faster due to buoyancy.
As mentioned in the previous section, when the temperature of the
flames drop below Tignition, I render smoke instead.

2.4.3 Ray Tracing

In 2D, I performed rendering by dividing the pixels into a grid and
setting the value of each pixel to the corresponding colour. In 3D,
I implemented a basic ray tracer and placed the grid in the scene.
When a ray of light hit the grid, I traversed it in a similar way one
would traverse a uniform grid. If the ray intersected an element that
contained either fuel or flames, I would return the corresponding
colour.

3 Discussion

All of the figures and clips in the accompanying video are 600 ×
600 pixels. The grids were 150 × 150 in 2D and 150 × 150 ×
150 in 3D, not including padding, with the exception of Figure 1
(middle), which had a grid of 100 × 100 × 100. The 2D clips
were rendered at varying framerates and steps per frame, however
the 3D animations were all rendered at 30 FPS with one step per
frame. The 3D animations were rendered overnight (8-12 hours)
on a desktop with two Intel Xeon hyperthreaded 12-core CPUs at
2.7GHz, i.e. a total of 24 cores.

I implemented DSD from [Hong et al. 2007] when my fire simula-
tion was still 2D, but it was not working correctly. I realized that
mean curvature did not mean the same thing in 2D as 3D, so I ex-
tended my simulation to 3D. When I ran the fire simulator in 3D
with DSD, the level set became unstable and exploded, and there
were no visible cellular patterns in the fire. Tweaking the constants
stopped in from blowing up as fast, but it still blew up. As you can
see, it takes a long time to render at higher resolutions in 3D, and
I could not test DSD at lower resolutions for a couple reasons: the
constants have different effects at different resolutions and I do not
think that the cellular patterns would even appear at lower resolu-
tions. Since I could not quickly iterate through different parameters,
I could not tell if there was a bug in my implementation or if I was
just choosing poor parameters. If there is a problem with the im-
plementation, and it is not a bug, then I have a couple suspicions
about the cause. I could have extrapolated the mean curvature in
the wrong direction, or maybe I should have accounted for variable
density when buildingA from (4). If I had more time, I would try to
set up my simulation so that I could use the constants directly from
[Hong et al. 2007]. Then if it still did not work, I would try exper-
imenting with the things I might be missing. I see no reason why
there would be a bug, since the implementation details are pretty
simple, but I would also probably double check that as well.

References

BRIDSON, R. 2015. Fluid simulation for computer graphics. CRC
Press.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM, 15–22.

HONG, J.-M., SHINAR, T., AND FEDKIW, R. 2007. Wrinkled
flames and cellular patterns. In ACM Transactions on Graphics
(TOG), vol. 26, ACM, 47.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Phys-
ically based modeling and animation of fire. ACM Transactions
on Graphics (TOG) 21, 3, 721–728.

PHARR, M., AND HUMPHREYS, G. 2004. Physically based ren-
dering: From theory to implementation. Morgan Kaufmann.

ZHAO, H. 2005. A fast sweeping method for eikonal equations.
Mathematics of computation 74, 250, 603–627.

